Understanding the thermal biology of insects is of increasing importance for predicting their geographic distribution, particularly in light of current and future global temperature increases. Within the limits set by genetic makeup, thermal tolerance is affected by the physiological conditioning of individuals (e.g.
View Article and Find Full Text PDFMaternally transmitted obligatory endosymbionts are found in the female gonads as well as in somatic tissue and are expected to provide missing metabolite to their hosts. These deficiencies are presumably complemented through specific symbiotic microorganisms such as -like endosymbionts (CLEs) of ticks. CLEs are localized in specialized host tissue cells within the Malpighian tubules (Mt) and the ovaries (Ov) from which they are maternally transmitted to developing oocytes.
View Article and Find Full Text PDFInsects, similarly to other small terrestrial invertebrates, are particularly susceptible to climatic stress. Physiological adjustments to cope with the environment (i.e.
View Article and Find Full Text PDFDomestication disconnects an animal from its natural environment and diet, imposing changes in the attendant microbial community. We examine these changes in Philornis downsi (Muscidae), an invasive parasitic fly of land birds in the Galapagos Islands. Using a 16S rDNA profiling approach we studied the microbiome of larvae and adults of wild and laboratory-reared populations.
View Article and Find Full Text PDFObligatory hematophagous arthropods such as lice, bugs, flies, and ticks harbor bacterial endosymbionts that are expected to complement missing essential nutrients in their diet. Genomic and some experimental evidence support this expectation. Hard ticks (Acari: Ixodidae) are associated with several lineages of bacterial symbionts, and very few were experimentally shown to be essential to some aspects of tick's fitness.
View Article and Find Full Text PDFBackground: The Mediterranean fruit fly Ceratitis capitata is a major pest in horticulture. The development of fly larvae is mediated by bacterial decay in the fruit tissue. Despite the importance of bacteria on larval development, very little is known about the interaction between bacteria and larvae in their true ecological context.
View Article and Find Full Text PDFDodge and Aitken (Diptera: Muscidae) is an avian parasitic fly that has invaded the Galapagos archipelago and exerts an onerous burden on populations of endemic land birds. As part of an ongoing effort to develop tools for the integrated management of this fly, our objective was to determine its long- and short-range responses to bacterial and fungal cues associated with adult . We hypothesized that the bacterial and fungal communities would elicit attraction at distance through volatiles, and appetitive responses upon contact.
View Article and Find Full Text PDFMicrobial associations are widespread across the insects. In the olive fruit fly Bactrocera oleae (Diptera: Tephritidae), vertically transmitted gut symbionts contribute to larval development inside the olive host, and to adult nutrition. Nevertheless, their effect on behavioural decisions of adults is unknown.
View Article and Find Full Text PDFThe composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host-parasite co-evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds.
View Article and Find Full Text PDFThe olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B.
View Article and Find Full Text PDF"Candidatus Erwinia dacicola" is a Gammaproteobacterium that forms a symbiotic association with the agricultural pest Bactrocera oleae Here, we present a 2.1-Mb draft hybrid genome assembly for "Ca. Erwinia dacicola" generated from single-cell and metagenomic data.
View Article and Find Full Text PDFRipe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives.
View Article and Find Full Text PDFThe Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis.
View Article and Find Full Text PDFOlive flies (Bactrocera oleae) are intimately associated with bacteria throughout their life cycle, and both larvae and adults are morphologically adapted for housing bacteria in the digestive tract. We tested the hypothesis that these bacteria contribute to the adult fly's fitness in a diet-dependent fashion. We predicted that when dietary protein is superabundant, bacterial contribution will be minimal.
View Article and Find Full Text PDF