Preterm fetuses and newborns have a high risk of neural injury and impaired neural maturation, leading to neurodevelopmental disability. Developing effective treatments is rather challenging, as preterm brain injury may occur at any time during pregnancy and postnatally, and many cases involve multiple pathogenic factors. This review examines research on how the preterm fetus responds to hypoxia-ischemia and how brain injury evolves after hypoxia-ischemia, offering windows of opportunity for treatment and insights into the mechanisms of injury during key phases.
View Article and Find Full Text PDFHypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.
View Article and Find Full Text PDFBrief repeated fetal hypoxaemia during labour can trigger intrapartum decelerations of the fetal heart rate (FHR) via the peripheral chemoreflex or the direct effects of myocardial hypoxia, but the relative contribution of these two mechanisms and how this balance changes with evolving fetal compromise remain unknown. In the present study, chronically instrumented near-term fetal sheep received surgical vagotomy (n = 8) or sham vagotomy (control, n = 11) to disable the peripheral chemoreflex and unmask myocardial hypoxia. One-minute complete umbilical cord occlusions (UCOs) were performed every 2.
View Article and Find Full Text PDFPerinatal infection/inflammation can trigger preterm birth and contribute to neurodevelopmental disability. There are currently no sensitive, specific methods to identify perinatal infection. We investigated the utility of time, frequency and non-linear measures of fetal heart rate (FHR) variability (FHRV) to identify either progressive or more rapid inflammation.
View Article and Find Full Text PDFThe interpretation of fetal heart rate (FHR) patterns is the only available method to continuously monitor fetal well-being during labour. One of the most important yet contentious aspects of the FHR pattern is changes in FHR variability (FHRV). Some clinical studies suggest that loss of FHRV during labour is a sign of fetal compromise so this is reflected in practice guidelines.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2021
Fetal heart rate variability (FHRV) is a key index of antenatal and intrapartum fetal well-being. FHRV is well established to be mediated by both arms of the autonomic nervous system, but it remains unknown whether higher centers in the forebrain contribute to FHRV. We tested the hypothesis that selective forebrain ischemia would impair the generation of FHRV.
View Article and Find Full Text PDFFetal heart rate variability (FHRV) is a widely used index of intrapartum well being. Both arms of the autonomic system regulate FHRV under normoxic conditions in the antenatal period. However, autonomic control of FHRV during labor when the fetus is exposed to repeated, brief hypoxemia during uterine contractions is poorly understood.
View Article and Find Full Text PDFCirculating catecholamines are critical for fetal adaptation to hypoxia by regulating fetal heart rate (FHR) and promoting myocardial contractility and peripheral vasoconstriction. They have been hypothesized to contribute to changes in FHR variability (FHRV) and T-wave morphology, clinical indexes of fetal well-being during labor. β-Adrenergic blockade with propranolol does not affect FHRV during labor-like hypoxemia and only attenuated the increase in T-wave height between the episodes of hypoxemia.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2020
Fetal heart rate (FHR) variability (FHRV) and ST segment morphology are potential clinical indices of fetal well-being during labor. β-Adrenergic stimulation by circulating catecholamines has been hypothesized to contribute to both FHRV and ST segment morphology during labor, but this has not been tested during brief repeated fetal hypoxemia that is characteristic of labor. Near-term fetal sheep (0.
View Article and Find Full Text PDFKey Points: •Therapeutic hypothermia needs to be started as early as possible in the first 6 h after acute injury caused by hypoxia-ischaemia (HI), but the severity and timing of HI are often unclear. In this study we evaluated whether measures of heart rate variability (HRV) might provide early biomarkers of HI. •The duration but not magnitude of suppression of HRV power and conversely increased sample entropy of the heart rate were associated with severity of HI, such that changes in the first 3 h did not discriminate between groups.
View Article and Find Full Text PDFKey Points: Fetal heart rate variability is a critical index of fetal wellbeing. Suppression of heart rate variability may provide prognostic information on the risk of hypoxic-ischaemic brain injury after birth. In the present study, we report the evolution of fetal heart rate variability after both mild and severe hypoxia-ischaemia.
View Article and Find Full Text PDF