Publications by authors named "Michael Barbier"

Human papillomaviruses (HPV) are small, non-enveloped DNA viruses, which upon chronic infection can provoke cervical and head-and-neck cancers. Although the infectious life cycle of HPV has been studied and a vaccine is available for the most prevalent cancer-causing HPV types, there are no antiviral agents to treat infected patients. Hence, there is a need for novel therapeutic entry points and a means to identify them.

View Article and Find Full Text PDF

Hyperuniformity is evolving to become a unifying concept that can help classify and characterize equilibrium and nonequilibrium states of matter. Therefore, understanding the extent of hyperuniformity in dissipative systems is critical. Here, we study the dynamic evolution of hyperuniformity in a driven dissipative colloidal system.

View Article and Find Full Text PDF

Background: Immune activation during pregnancy is an important risk factor for schizophrenia. Brain dysconnectivity and NMDA receptor (NMDAR) hypofunction have been postulated to be central to schizophrenia pathophysiology. The aim of this study was to investigate resting-state functional connectivity (resting-state functional MRI-rsfMRI), microstructure (diffusion tension imaging-DTI) and response to NMDAR antagonist (pharmacological fMRI-phMRI) using multimodal MRI in offspring of pregnant dams exposed to immune challenge (maternal immune activation-MIA model), and determine whether these neuroimaging readouts correlate with schizophrenia-related behaviour.

View Article and Find Full Text PDF

PREDECT, a European IMI consortium, has assumed the task to generate robust 2D and 3D culture platforms. Protocols established for 2D and 3D monoculture and stromal coculture models of increasing complexity (spheroid, stirred-tank bioreactor, Matrigel- and collagen-embedded cultures) have been established between six laboratories within academia, biotech, and pharma. These models were tested using three tumor cell lines (MCF7, LNCaP, and NCI-H1437), covering three pathologies (breast, prostate, and lung), but should be readily transferable to other model systems.

View Article and Find Full Text PDF

Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery.

View Article and Find Full Text PDF

Summary: Many neurodegenerative disorders, such as Alzheimer's Disease, pertain to or spread from specific sites of the brain. Hence, accurate disease staging or therapy assessment in transgenic model mice demands automated analysis of selected brain regions. To address this need, we have developed an algorithm, termed SliceMap, that enables contextual quantification by mapping anatomical information onto microtome-cut brain slices.

View Article and Find Full Text PDF

Unlabelled: Deep tissue imaging is increasingly used for non-destructive interrogation of intact organs and small model organisms. An intuitive approach to increase the imaging depth by almost a factor of 2 is to record a sample from two sides and fuse both image stacks. However, imperfect three-dimensional alignment of both stacks presents a computational challenge.

View Article and Find Full Text PDF

Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437.

View Article and Find Full Text PDF

In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation.

View Article and Find Full Text PDF

We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters.

View Article and Find Full Text PDF