Publications by authors named "Michael BOErgesen"

Glucose is an important inducer of insulin secretion, but it also stimulates long-term adaptive changes in gene expression that can either promote or antagonize the proliferative potential and function of β cells. Here, we have generated time-resolved profiles of enhancer and transcriptional activity in response to glucose in the INS-1E pancreatic β cell line. Our data outline a biphasic response with a first transcriptional wave during which metabolic genes are activated, and a second wave where cell-cycle genes are activated and β cell identity genes are repressed.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key activators of adipogenesis. They mutually induce the expression of each other and have been reported to cooperate in activation of a few adipocyte genes. Recently, genome-wide profiling revealed a high degree of overlap between PPARγ and C/EBPα binding in adipocytes, suggesting that cooperativeness could be mediated through common binding sites.

View Article and Find Full Text PDF

Eleven environmental relevant chemicals were investigated for their ability to affect adipogenesis in vitro, biomarker release from adipocytes and PPARα and γ activation. We found that butylparaben stimulated adipogenesis in 3T3-L1 adipocytes and increased release of leptin, adiponectin and resistin from the cells. Butylparaben activated PPARγ as well, which may be a mediator of the adipogenic effect.

View Article and Find Full Text PDF
Article Synopsis
  • LXRs are nuclear receptors that work with RXR to regulate lipid metabolism in the liver, and their interaction is crucial for lipid-related conditions like hypertriglyceridemia.
  • Studies show that RXR and LXR binding in mouse liver is influenced by different agonists, with LXR agonists significantly increasing the binding of both RXR and LXR.
  • There's a notable interplay between LXR and PPARα in binding to shared genomic sites, indicating a complex regulatory network in hepatic gene expression related to lipid metabolism.
View Article and Find Full Text PDF

Chronic exposure to elevated levels of glucose and fatty acids leads to dysfunction of pancreatic β-cells by mechanisms that are only partly understood. The transcription factor peroxisome proliferator-activated receptor α (PPARα) is an important regulator of genes involved in fatty acid metabolism and has been shown to protect against lipid-induced β-cell dysfunction. We and others have previously shown that expression of the PPARα gene in β-cells is rapidly repressed by glucose.

View Article and Find Full Text PDF
Article Synopsis
  • The Mediator subunit MED1 was previously thought to be essential for PPARgamma's interaction with target gene promoters, but recent studies show PPARgamma can activate genes independently of MED1.
  • A study found that recruitment of various key proteins involved in gene activation occurs at the Fabp4 gene's enhancer and promoter without MED1's involvement, pointing to MED14 as a crucial component instead.
  • MED14 interacts with PPARgamma and is necessary for its transcriptional activity, as its knockdown negatively impacts the ability of cells to undergo adipogenesis.
View Article and Find Full Text PDF

The peroxisome proliferator-activated receptor delta (PPARdelta) is implicated in regulation of mitochondrial processes in a number of tissues, and PPARdelta activation is associated with decreased susceptibility to ectopic lipid deposition and metabolic disease. Here, we show that PPARdelta is the PPAR subtype expressed at the highest level in insulinoma cells and rat pancreatic islets. Furthermore, PPARdelta displays high transcriptional activity and acts in pronounced synergy with retinoid-X-receptor (RXR).

View Article and Find Full Text PDF

p63 is a master switch in the complex network of signaling pathways controlling the establishment and maintenance of stratified epithelia. We provide evidence that peroxisome proliferator-activated receptor-alpha (PPARalpha), a ligand-activated nuclear receptor that participates in the skin wound healing process, is a target of p63 in human keratinocytes. Silencing of p63 by RNA interference and transient transfections showed that p63 represses PPARalpha through a functional region of promoter B.

View Article and Find Full Text PDF

Tight regulation of fatty acid metabolism in pancreatic beta-cells is important for beta-cell viability and function. Chronic exposure to elevated concentrations of fatty acid is associated with beta-cell lipotoxicity. Glucose is known to repress fatty acid oxidation and hence to augment the toxicity of fatty acids.

View Article and Find Full Text PDF

Fatty acids (FAs) are known to be important regulators of insulin secretion from pancreatic beta-cells. FA-coenzyme A esters have been shown to directly stimulate the secretion process, whereas long-term exposure of beta-cells to FAs compromises glucose-stimulated insulin secretion (GSIS) by mechanisms unknown to date. It has been speculated that some of these long-term effects are mediated by members of the peroxisome proliferator-activated receptor (PPAR) family via an induction of uncoupling protein-2 (UCP2).

View Article and Find Full Text PDF