Publications by authors named "Michael B Wunder"

Trade-offs between current and future reproduction manifest as a set of co-varying life history and metabolic traits, collectively referred to as 'pace of life' (POL). Seasonal migration modulates environmental dynamics and putatively affects POL, however, the mechanisms by which migratory behaviour shapes POL remain unclear. We explored how migratory behaviour interacts with environmental and metabolic dynamics to shape POL.

View Article and Find Full Text PDF

Life history traits are used to predict asymptotic odds of extinction from dynamic conditions. Less is known about how life history traits interact with stochasticity and population structure of finite populations to predict near-term odds of extinction. Through empirically parameterized matrix population models, we study the impact of life history (reproduction, pace), stochasticity (environmental, demographic), and population history (existing, novel) on the transient population dynamics of finite populations of plant species.

View Article and Find Full Text PDF

Clark's nutcrackers () are obligate seed dispersers for whitebark pine (), but they frequently use other conifer seed resources because of annual variability in cone production or geographic variation in whitebark pine availability. Whitebark pine is declining from several threats including white pine blister rust, leading to potential population declines in the nutcracker and the pine. We hypothesize that where there are few additional seed resources, whitebark pine becomes the key and limiting resource supporting nutcracker populations.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how animals, specifically migratory birds like the Painted Bunting, synchronize their molting process with resource availability, influencing their ecology and evolution.
  • Researchers use genome-wide sequencing and stable isotope analysis to understand genetic variations and environmental factors that drive distinct molting patterns across different populations.
  • Results reveal that certain genes related to feather development are linked to environmental conditions, illustrating the complex relationship between genetics, molting traits, and climate factors.
View Article and Find Full Text PDF

Climatic conditions affect animals but range-wide impacts at the population level remain largely unknown, especially in migratory species. However, studying climate-population relationships is still challenging in small migrants due to a lack of efficient and cost-effective geographic tracking method. Spatial distribution patterns of environmental stable isotopes (so called 'isoscapes') generally overcome these limitations but none of the currently available isoscapes provide a substantial longitudinal gradient in species-rich sub-Saharan Africa.

View Article and Find Full Text PDF

Determining the dynamics of where and when individuals occur is necessary to understand population declines and identify critical areas for populations of conservation concern. However, there are few examples where a spatially and temporally explicit model has been used to evaluate the migratory dynamics of a bird population across its entire annual cycle. We used geolocator-derived migration tracks of 84 Dunlin (Calidris alpina) on the East Asian-Australasian Flyway (EAAF) to construct a migratory network describing annual subspecies-specific migration patterns in space and time.

View Article and Find Full Text PDF

Seasonal migration is a widespread phenomenon undertaken by myriad organisms, including birds. Competing hypotheses about ultimate drivers of seasonal migration in birds contrast relative resource abundances at high latitudes ("southern home hypothesis") against avoidance of winter resource scarcity ("dispersal-migration hypothesis"). However, direct tests of these competing hypotheses have been rare and to date limited to historical biogeographic reconstructions.

View Article and Find Full Text PDF

Organisms assess biotic and abiotic cues at multiple sites when deciding where to settle. However, due to temporal constraints on this prospecting, the suitability of available habitat may be difficult for an individual to assess when cues are most reliable, or at the time they are making settlement decisions. For migratory birds, the postbreeding season may be the optimal time to prospect and inform settlement decisions for future breeding seasons.

View Article and Find Full Text PDF

In this letter we present comments on the article "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus" by Coro published in 2020.

View Article and Find Full Text PDF

Science provides a method to learn about the relationships between observed patterns and the processes that generate them. However, inference can be confounded when an observed pattern cannot be clearly and wholly attributed to a hypothesized process. Over-reliance on traditional single-hypothesis methods (i.

View Article and Find Full Text PDF

Migratory divides are proposed to be catalysts for speciation across a diversity of taxa. However, it is difficult to test the relative contributions of migratory behaviour vs. other divergent traits to reproductive isolation.

View Article and Find Full Text PDF

Statistical regression relationships between the hydrogen (H) and oxygen (O) isotope ratios (δH and δO, respectively) of animal organic tissues and those of environmental water have been widely used to reconstruct animal movements, paleoenvironments, and diet and trophic relationships. In natural populations, however, tissue-environment isotopic relationships are highly variable among animal types and geographic regions. No systematic understanding of the origin(s) of this variability currently exists, clouding the interpretation of isotope data.

View Article and Find Full Text PDF

In their 2015 Current Biology paper, Streby et al.[1] reported that Golden-winged Warblers (Vermivora chrysoptera), which had just migrated to their breeding location in eastern Tennessee, performed a facultative and up to ">1,500 km roundtrip" to the Gulf of Mexico to avoid a severe tornadic storm. From light-level geolocator data, wherein geographical locations are estimated via the timing of sunrise and sunset, Streby et al.

View Article and Find Full Text PDF

Determining patterns of migratory connectivity for highly-mobile, wide-ranging species, such as sea turtles, is challenging. Here, we combined satellite telemetry and stable isotope analysis to estimate foraging locations for 749 individual loggerheads nesting along the east central Florida (USA) coast, the largest rookery for the Northwest Atlantic population. We aggregated individual results by year, identified seven foraging hotspots and tracked these summaries to describe the dynamics of inter-annual contributions of these geographic areas to this rookery over a nine-year period.

View Article and Find Full Text PDF

Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e.

View Article and Find Full Text PDF

In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S.

View Article and Find Full Text PDF

Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data.

View Article and Find Full Text PDF

Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America.

View Article and Find Full Text PDF

Long-distance migration evolved independently in bats and unique migration behaviors are likely, but because of their cryptic lifestyles, many details remain unknown. North American hoary bats (Lasiurus cinereus cinereus) roost in trees year-round and probably migrate farther than any other bats, yet we still lack basic information about their migration patterns and wintering locations or strategies. This information is needed to better understand unprecedented fatality of hoary bats at wind turbines during autumn migration and to determine whether the species could be susceptible to an emerging disease affecting hibernating bats.

View Article and Find Full Text PDF

Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies (Danaus plexippus) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km(2) that encompassed 99% occurrence probability.

View Article and Find Full Text PDF

Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable-isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species.

View Article and Find Full Text PDF

Background: Accurately quantifying key interactions between species is important for developing effective recovery strategies for threatened and endangered species. Whitebark pine (Pinus albicaulis), a candidate species for listing under the Endangered Species Act, depends on Clark's nutcracker (Nucifraga columbiana) for seed dispersal. As whitebark pine succumbs to exotic disease and mountain pine beetles (Dendroctonus ponderosae), cone production declines, and nutcrackers visit stands less frequently, reducing the probability of seed dispersal.

View Article and Find Full Text PDF

1. Because stable isotope distributions in organic material vary systematically across energy gradients that exist in ecosystems, community and population structures, and in individual physiological systems, isotope values in animal tissues have helped address a broad range of questions in animal ecology. It follows that every tissue sample provides an isotopic profile that can be used to study dietary or movement histories of individual animals.

View Article and Find Full Text PDF

Analyzing the effects on cell growth inhibition and/or cell death has been an important component of biological research. The MTS assay and LDH-based cytotoxicity assays are two of the most commonly used methods for this purpose. However, data here showed that MTS cell proliferation assay could not distinguish the effects of cell death or cell growth inhibition.

View Article and Find Full Text PDF

Background: Elucidating geographic locations from where migratory birds are recruited into adult breeding populations is a fundamental but largely elusive goal in conservation biology. This is especially true for species that breed in remote northern areas where field-based demographic assessments are logistically challenging.

Methodology/findings: Here we used hydrogen isotopes (deltaD) to determine natal origins of migrating hatch-year lesser scaup (Aythya affinis) harvested by hunters in the United States from all North American flyways during the hunting seasons of 1999-2000 (n = 412) and 2000-2001 (n = 455).

View Article and Find Full Text PDF