Publications by authors named "Michael B McCamy"

Vasarely's nested squares illusion shows that the corners of concentric squares, arranged in a gradient of increasing or decreasing luminance, generate illusory "corner-folds," which appear more salient (either brighter or darker) than the adjacent flat (non- corner) regions of each individual square. The Alternating Brightness Star (ABS) illusion, based on Vasarely's classic nested squares, further shows that the strength of these corner-folds depends on corner angle. Previous psychophysical studies showed the relationship between corner angle and perceived contrast in the ABS illusion to be linear, with sharp angles looking higher in contrast, and shallow angles lower in contrast.

View Article and Find Full Text PDF

Fixational eye movements (FEMs), including microsaccades, drift, and tremor, shift our eye position during ocular fixation, producing retinal motion that is thought to help visibility by counteracting neural adaptation to unchanging stimulation. Yet, how each FEM type influences this process is still debated. Recent studies found little to no relationship between microsaccades and visual perception of spatial frequencies (SF).

View Article and Find Full Text PDF

Aircrew fatigue is a major contributor to operational errors in civil and military aviation. Objective detection of pilot fatigue is thus critical to prevent aviation catastrophes. Previous work has linked fatigue to changes in oculomotor dynamics, but few studies have studied this relationship in critical safety environments.

View Article and Find Full Text PDF

How does the visual system differentiate self-generated motion from motion in the external world? Humans can discern object motion from identical retinal image displacements induced by eye movements, but the brain mechanisms underlying this ability are unknown. Here we exploit the frequent production of microsaccades during ocular fixation in the primate to compare primary visual cortical responses to self-generated motion (real microsaccades) versus motion in the external world (object motion mimicking microsaccades). Real and simulated microsaccades were randomly interleaved in the same viewing condition, thereby producing equivalent oculomotor and behavioural engagement.

View Article and Find Full Text PDF

Saccadic intrusions (SIs), predominantly horizontal saccades that interrupt accurate fixation, include square-wave jerks (SWJs; the most common type of SI), which consist of an initial saccade away from the fixation target followed, after a short delay, by a return saccade that brings the eye back onto target. SWJs are present in most human subjects, but are prominent by their increased frequency and size in certain parkinsonian disorders and in recessive, hereditary spinocerebellar ataxias. SWJs have been also documented in monkeys with tectal and cerebellar etiologies, but no studies to date have investigated the occurrence of SWJs in healthy nonhuman primates.

View Article and Find Full Text PDF

Human eyes move continuously, even during visual fixation. These "fixational eye movements" (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers.

View Article and Find Full Text PDF

Most research connecting task performance and neural activity to date has been conducted in laboratory conditions. Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots.

View Article and Find Full Text PDF

Driver fatigue is a common cause of car accidents. Thus, the objective detection of driver fatigue is a first step toward the effective management of fatigue-related traffic accidents. Here, we investigated the effects of driving time, a common inducer of driver fatigue, on the dynamics of fixational eye movements.

View Article and Find Full Text PDF

Our eyes move continuously. Even when we attempt to fix our gaze, we produce "fixational" eye movements including microsaccades, drift and tremor. The potential role of microsaccades versus drifts in the control of eye position has been debated for decades and remains in question today.

View Article and Find Full Text PDF

Fixational eye movements (FEMs; including microsaccades, drift and tremor) are thought to improve visibility during fixation by thwarting neural adaptation to unchanging stimuli, but how the different FEM types influence this process is a matter of debate. Attempts to answer this question have been hampered by the failure to distinguish between the prevention of fading (where fading is blocked before it happens in the first place) and the reversal of fading (where vision is restored after fading has already occurred). Because fading during fixation is a detriment to clear vision, the prevention of fading, which avoids visual degradation before it happens, is a more desirable scenario than improving visibility after fading has occurred.

View Article and Find Full Text PDF

Hypoxia, defined as decreased availability of oxygen in the body's tissues, can lead to dyspnea, rapid pulse, syncope, visual dysfunction, mental disturbances such as delirium or euphoria, and even death. It is considered to be one of the most serious hazards during flight. Thus, early and objective detection of the physiological effects of hypoxia is critical to prevent catastrophes in civil and military aviation.

View Article and Find Full Text PDF

Classical image statistics, such as contrast, entropy, and the correlation between central and nearby pixel intensities, are thought to guide ocular fixation targeting. However, these statistics are not necessarily task relevant and therefore do not provide a complete picture of the relationship between informativeness and ocular targeting. Moreover, it is not known whether either informativeness or classical image statistics affect microsaccade production; thus, the role of microsaccades in information acquisition is also unknown.

View Article and Find Full Text PDF

Microsaccades are involuntary, small-magnitude saccadic eye movements that occur during attempted visual fixation. Recent research has found that attention can modulate microsaccade dynamics, but few studies have addressed the effects of task difficulty on microsaccade parameters, and those have obtained contradictory results. Further, no study to date has investigated the influence of task difficulty on microsaccade production during the performance of non-visual tasks.

View Article and Find Full Text PDF

Objective: Little is known about the effects of surgical residents' fatigue on patient safety. We monitored surgical residents' fatigue levels during their call day using (1) eye movement metrics, (2) objective measures of laparoscopic surgical performance, and (3) subjective reports based on standardized questionnaires.

Background: Prior attempts to investigate the effects of fatigue on surgical performance have suffered from methodological limitations, including inconsistent definitions and lack of objective measures of fatigue, and nonstandardized measures of surgical performance.

View Article and Find Full Text PDF

Stationary targets can fade perceptually during steady visual fixation, a phenomenon known as Troxler fading. Recent research found that microsaccades-small, involuntary saccades produced during attempted fixation-can restore the visibility of faded targets, both in the visual periphery and in the fovea. Because the targets tested previously extended beyond the foveal area, however, the ability of microsaccades to restore the visibility of foveally-contained targets remains unclear.

View Article and Find Full Text PDF

Our eyes are always in motion. Even during periods of relative fixation we produce so-called 'fixational eye movements', which include microsaccades, drift and tremor. Mental fatigue can modulate saccade dynamics, but its effects on microsaccades and drift are unknown.

View Article and Find Full Text PDF

A large amount of classic and contemporary vision studies require subjects to fixate a target. Target fixation serves as a normalizing factor across studies, promoting the field's ability to compare and contrast experiments. Yet, fixation target parameters, including luminance, contrast, size, shape and color, vary across studies, potentially affecting the interpretation of results.

View Article and Find Full Text PDF

Our eyes are in continuous motion. Even when we attempt to fix our gaze, we produce so called "fixational eye movements", which include microsaccades, drift, and ocular microtremor (OMT). Microsaccades, the largest and fastest type of fixational eye movement, shift the retinal image from several dozen to several hundred photoreceptors and have equivalent physical characteristics to saccades, only on a smaller scale (Martinez-Conde, Otero-Millan & Macknik, 2013).

View Article and Find Full Text PDF

Our eyes move constantly, even when we try to fixate our gaze. Fixational eye movements prevent and restore visual loss during fixation, yet the relative impact of each type of fixational eye movement remains controversial. For over five decades, the debate has focused on microsaccades, the fastest and largest fixational eye movements.

View Article and Find Full Text PDF