Publications by authors named "Michael B Martinez"

A survey of plasma proteins in approximately 1,300 individuals by MALDI-TOF MS resulted in identification of a structural polymorphism of apolipoprotein C1 (ApoC1) that was found only in persons of American Indian or Mexican ancestry. MS/MS analysis revealed that the alteration consisted of a T45S variation. The methyl group of T45 forms part of the lipid-interacting surface of ApoC1.

View Article and Find Full Text PDF

Carefully controlled ZipTip extraction of diluted human plasma or serum was combined with MALDI-TOF-MS to produce highly reproducible protein profiles. Components detected included apolipoproteins CI, CII and CIII as well as transthyretin and several isoforms of each protein that are created by glycosylation or other modification and by proteolytic processing. Profiles of healthy individuals all contained the same 15 components.

View Article and Find Full Text PDF

Active site-inhibited blood clotting factor VIIa (fVIIai) binds to tissue factor (TF), a cell surface receptor that is exposed upon injury and initiates the blood clotting cascade. FVIIai blocks binding of the corresponding enzyme (fVIIa) or zymogen (fVII) forms of factor VII and inhibits coagulation. Although several studies have suggested that fVIIai may have superior anticoagulation effects in vivo, a challenge for use of fVIIai is cost of production.

View Article and Find Full Text PDF

Chronic allograft rejection remains a leading cause of morbidity and mortality in lung transplant recipients. Currently, diagnosis is based on lung biopsies or the presence of bronchiolitis obliterans syndrome (BOS). To identify a biomarker of rejection we performed a proteome survey of archived bronchoalveolar lavage fluid (BALF) acquired from lung transplant recipients between 1993 and 1996 using mass spectrometry (MS).

View Article and Find Full Text PDF

Site-directed mutagenesis of the 40 N-terminal residues (gamma-carboxyglutamic acid domain) of blood clotting factor VII was carried out to identify sites that improve membrane affinity. Improvements and degree of change included P10Q (2-fold), K32E (13-fold), and insertion of Tyr at position 4 (2-fold). Two other beneficial changes, D33F (2-fold) and A34E (1.

View Article and Find Full Text PDF