Compressed mini-tablets in sachets or capsules are an increasingly prevalent oral solid dosage form for pediatric products. While resembling adult tablets, additional care is required to control weight and potency (blend uniformity) variation due to their small size (≤2.5 mm average diameter).
View Article and Find Full Text PDFOral delivery of poorly water-soluble, weakly basic drugs may be problematic based on the drugs' intrinsic properties. Many drugs in this subset have overcome barriers to delivery following successful formulation as amorphous solid dispersions (ASDs). To process drugs as ASDs, multiple commercially relevant technologies have been developed and become well understood.
View Article and Find Full Text PDFDespite the wide utilization of amorphous solid dispersions (ASDs) for formulating poorly water-soluble drugs, fundamental understanding of the structural basis behind their stability and dissolution behavior is limited. This is largely due to the lack of high-resolution structural tools for investigating multicomponent and amorphous systems in the solid state. In this study, we present what is likely the first publication quantifying the molecular interaction between the drug and polymer in ASDs at an angstrom level by utilizing F magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques.
View Article and Find Full Text PDFAcyclovir is a poorly permeable, short half-life drug with poor colonic absorption, and current conventional controlled release formulations are unable to decrease the frequency of administration. We designed acyclovir dosage forms to be administered less frequently by being retained in the stomach and releasing drug over an extended duration. We developed a conventional modified-release matrix tablet to sustain the release of acyclovir and surrounded it with a hydrophilic poly(urethane) layer.
View Article and Find Full Text PDFImplants offer the opportunity to improve patient adherence and real-world outcomes. However, most polymers used today are hydrophobic and limit drug properties suitable for development. Thermoplastic poly(urethanes) (TPUs) form pores upon hydration and may facilitate the development of implants containing drugs exhibiting broadly different properties.
View Article and Find Full Text PDFHot melt extrusion (HME) has been used to prepare solid dispersions, especially molecularly dispersed amorphous solid dispersions (ASDs) for solubility enhancement purposes. The energy generated by the extruder in the form of mechanical and thermal output enables the dispersion and dissolution of crystalline drugs in polymeric carriers. However, the impact of this thermal and mechanical energy on ASD systems remains unclear.
View Article and Find Full Text PDFHydrophobic and hydrophilic thermoplastic poly(urethane) (TPU) mixtures offer the opportunity to tune water swelling capacity and diffusion rate for drugs exhibiting broadly different properties. We sought to (1) assess the range of drug diffusion rates achieved by varying hydrophilic-to-hydrophobic TPU ratio relative to varying ethylene vinyl acetate (EVA) crystallinity; (2) investigate the effect of mixture ratio on permeability of emtricitabine; and (3) investigate the impact of the extrusion process on mixing of the two TPUs and the resulting impact on drug diffusion. The permeability of water-soluble emtricitabine exhibited a 736-fold range across the blends of TPU, but only a 3.
View Article and Find Full Text PDFSince their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years.
View Article and Find Full Text PDF