Publications by authors named "Michael B Elowitz"

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.

View Article and Find Full Text PDF

Artificial neural networks provide a powerful paradigm for nonbiological information processing. To understand whether similar principles could enable computation within living cells, we combined de novo-designed protein heterodimers and engineered viral proteases to implement a synthetic protein circuit that performs winner-take-all neural network classification. This "perceptein" circuit combines weighted input summation through reversible binding interactions with self-activation and mutual inhibition through irreversible proteolytic cleavage.

View Article and Find Full Text PDF

A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes.

View Article and Find Full Text PDF

The individual detection of human immunodeficiency virus (HIV) virions and resolution from extracellular vesicles (EVs) during analysis is a difficult challenge. Infectious enveloped virions and nonviral EVs are released simultaneously by HIV-infected host cells, in addition to hybrid viral EVs containing combinations of HIV and host components but lacking replicative ability. Complicating the issue, EVs and enveloped virions are both delimited by a lipid bilayer and share similar size and density.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of the extraembryonic ectoderm (ExE) in mouse placenta development and its critical interactions with the embryo, which are not fully understood.
  • Researchers created a detailed single-cell model to analyze differentiation processes in both embryonic and extraembryonic cells during mouse gastrulation, using a unique method to manipulate signaling pathways.
  • Key findings show that BMP4 signaling is essential for the differentiation of various cell types, influencing the development of the placenta and embryo at different stages, indicating a complex relationship between ExE and embryonic tissues.
View Article and Find Full Text PDF

Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes.

View Article and Find Full Text PDF

The ability to express transgenes at specified levels is critical for understanding cellular behaviors, and for applications in gene and cell therapy. Transfection, viral vectors, and other gene delivery methods produce varying protein expression levels, with limited quantitative control, while targeted knock-in and stable selection are inefficient and slow. Active compensation mechanisms can improve precision, but the need for additional proteins or lack of tunability have prevented their widespread use.

View Article and Find Full Text PDF

A longstanding challenge in gene therapy is expressing a dosage-sensitive gene within a tight therapeutic window. For example, loss of function causes Rett syndrome, while its duplication causes duplication syndrome. Viral gene delivery methods generate variable numbers of gene copies in individual cells, creating a need for gene dosage-invariant expression systems.

View Article and Find Full Text PDF

In multicellular organisms, cell types must be produced and maintained in appropriate proportions. One way this is achieved is through committed progenitor cells or extrinsic interactions that produce specific patterns of descendant cell types on lineage trees. However, cell fate commitment is probabilistic in most contexts, making it difficult to infer these dynamics and understand how they establish overall cell type proportions.

View Article and Find Full Text PDF

In animal cells, molecular pathways often comprise families of variant components, such as ligands or receptors. These pathway components are differentially expressed by different cell types, potentially tailoring pathway function to cell context. However, it has remained unclear how pathway expression profiles are distributed across cell types and whether similar profiles can occur in dissimilar cell types.

View Article and Find Full Text PDF

Many biological signaling pathways employ proteins that competitively dimerize in diverse combinations. These dimerization networks can perform biochemical computations, in which the concentrations of monomers (inputs) determine the concentrations of dimers (outputs). Despite their prevalence, little is known about the range of input-output computations that dimerization networks can perform (their "expressivity") and how it depends on network size and connectivity.

View Article and Find Full Text PDF

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.

View Article and Find Full Text PDF

Methylation of cytosines in CG dinucleotides (CpGs) within promoters has been shown to lead to gene silencing in mammals in natural contexts. Recently, engineered recruitment of methyltransferases (DNMTs) at specific loci was shown to be sufficient to silence synthetic and endogenous gene expression through this mechanism. A critical parameter for DNA methylation-based silencing is the distribution of CpGs within the target promoter.

View Article and Find Full Text PDF

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution.

View Article and Find Full Text PDF

Developing tissues form spatial patterns by establishing concentration gradients of diffusible signaling proteins called morphogens. The bone morphogenetic protein (BMP) morphogen pathway uses a family of extracellular modulators to reshape signaling gradients by actively "shuttling" ligands to different locations. It has remained unclear what circuits are sufficient to enable shuttling, what other patterns they can generate, and whether shuttling is evolutionarily conserved.

View Article and Find Full Text PDF

Methylation of cytosines in CG dinucleotides (CpGs) within promoters has been shown to lead to gene silencing in mammals in natural contexts. Recently, engineered recruitment of methyltransferases (DNMTs) at specific loci was shown to be sufficient to silence synthetic and endogenous gene expression through this mechanism. A critical parameter for DNA methylation-based silencing is the distribution of CpGs within the target promoter.

View Article and Find Full Text PDF

Many biological circuits comprise sets of protein variants that interact with one another in a many-to-many, or promiscuous, fashion. These architectures can provide powerful computational capabilities that are especially critical in multicellular organisms. Understanding the principles of biochemical computations in these circuits could allow more precise control of cellular behaviors.

View Article and Find Full Text PDF

In multicellular organisms, cell types must be produced and maintained in appropriate proportions. One way this is achieved is through committed progenitor cells that produce specific sets of descendant cell types. However, cell fate commitment is probabilistic in most contexts, making it difficult to infer progenitor states and understand how they establish overall cell type proportions.

View Article and Find Full Text PDF

Granzyme A from killer lymphocytes cleaves gasdermin B (GSDMB) and triggers pyroptosis in targeted human tumor cells, eliciting antitumor immunity. However, GSDMB has a controversial role in pyroptosis and has been linked to both anti- and protumor functions. Here, we found that splicing variants are functionally distinct.

View Article and Find Full Text PDF

To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos.

View Article and Find Full Text PDF

During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns.

View Article and Find Full Text PDF

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization.

View Article and Find Full Text PDF

Non-core spliceosome components are essential, conserved regulators of alternative splicing. They provide concentration-dependent control of diverse pre-mRNAs. Many splicing factors direct unproductive splicing of their own pre-mRNAs through negative autoregulation.

View Article and Find Full Text PDF

In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture.

View Article and Find Full Text PDF

Cell-cell communication systems typically comprise families of ligand and receptor variants that function together in combinations. Pathway activation depends on the complex way in which ligands are presented extracellularly and receptors are expressed by the signal-receiving cell. To understand the combinatorial logic of such a system, we systematically measured pairwise bone morphogenetic protein (BMP) ligand interactions in cells with varying receptor expression.

View Article and Find Full Text PDF