Publications by authors named "Michael B Davis"

Unlabelled: RNA interference is a conserved silencing mechanism that depends on the generation of small RNA molecules that disrupt synthesis of their corresponding transcripts. Nuclear RNA interference is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3.

View Article and Find Full Text PDF

Dosage compensation involves chromosome-wide gene regulatory mechanisms which impact higher order chromatin structure and are crucial for organismal health. Using a genetic approach, we identified Argonaute genes which promote dosage compensation in Caenorhabditis elegans. Dosage compensation in C.

View Article and Find Full Text PDF

Condensin complexes are key determinants of higher-order chromatin structure and are required for mitotic and meiotic chromosome compaction and segregation. We identified a new role for condensin in the maintenance of sister chromatid cohesion during C. elegans meiosis.

View Article and Find Full Text PDF

Background: In , in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites.

View Article and Find Full Text PDF

Higher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans.

View Article and Find Full Text PDF