Making recommendations from clinical practice guidelines (CPGs) computable for clinical decision support (CDS) has typically been a laborious and costly process. Identifying domain-specific regularities helps clinicians and knowledge engineers conceptualize, extract, and encode evidence-based recommendations. Based on our work to provide complex CDS in the management of multiple chronic diseases, we propose nine chronic disease CPG structural patterns, discuss considerations in representing the necessary knowledge, and illustrate them with the solutions that our CDS system provides.
View Article and Find Full Text PDFThrough close analysis of two pairs of systems that implement the automated evaluation of performance measures (PMs) and guideline-based clinical decision support (CDS), we contrast differences in their knowledge encoding and necessary changes to a CDS system that provides management recommendations for patients failing performance measures. We trace the sources of differences to the implementation environments and goals of PMs and CDS.
View Article and Find Full Text PDFAs utilization of clinical decision support (CDS) increases, it is important to continue the development and refinement of methods to accurately translate the intention of clinical practice guidelines (CPG) into a computable form. In this study, we validate and extend the 13 steps that Shiffman identified for translating CPG knowledge for use in CDS. During an implementation project of ATHENA-CDS, we encoded complex CPG recommendations for five common chronic conditions for integration into an existing clinical dashboard.
View Article and Find Full Text PDFAMIA Jt Summits Transl Sci Proc
August 2016
Clinical decision support (CDS) systems with complex logic are being developed. Ensuring the quality of CDS is imperative, but there is no consensus on testing standards. We tested ATHENA-HTN CDS after encoding updated hypertension guidelines into the system.
View Article and Find Full Text PDF