Publications by authors named "Michael Ariel"

North American pond turtles (Emydidae) are renowned for their ability to survive extreme hypoxia and anoxia, which enables several species to overwinter in ice-locked, anoxic freshwater ponds and bogs for months. Centrally important for surviving these conditions is a profound metabolic suppression, which enables ATP demands to be met entirely with glycolysis. To better understand whether anoxia limits special sensory functions, we recorded evoked potentials in a reduced brain preparation, in vitro, that was perfused with severely hypoxic artificial cerebral spinal fluid (aCSF).

View Article and Find Full Text PDF

Parallel fibers in the molecular layer of the vertebrate cerebellum mediate slow spike conduction in the transverse plane. In contrast, electrophysiological recordings have indicated that rapid spike conduction exists between the lateral regions of the cerebellar cortex of the red-ear pond turtle (Trachemys scripta). The anatomical basis for this commissure is now examined in that species using neuronal tracing techniques.

View Article and Find Full Text PDF

A detailed inventory of the constituent pieces in cerebral cortex is considered essential to understand the principles underlying cortical signal processing. Specifically, the search for pyramidal neuron subtypes is partly motivated by the hypothesis that a subtype-specific division of labor could create a rich substrate for computation. On the other hand, the extreme integration of individual neurons into the collective cortical circuit promotes the hypothesis that cellular individuality represents a smaller computational role within the context of the larger network.

View Article and Find Full Text PDF

Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300 μl) of an algesic solution (6% hypertonic saline, pH 4.

View Article and Find Full Text PDF

Voltage-sensitive dye activity within the thin, unfoliated turtle cerebellar cortex (Cb) was recorded in vitro during eighth cranial nerve (nVIII) stimulation. Short latency responses were localized to the middle of the lateral edges of both ipsilateral and contralateral Cb [vestibulocerebellum (vCb)]. Even with a severed contralateral Cb peduncle, stimulation of the nVIII ipsilateral to the intact peduncle evoked contralateral vCb responses with a mean latency of only 0.

View Article and Find Full Text PDF

The optic tectum holds a central position in the tectofugal pathway of non-mammalian species and is reciprocally connected with the nucleus isthmi. Here, we recorded from individual nucleus isthmi pars parvocellularis (Ipc) neurons in the turtle eye-attached whole-brain preparation in response to a range of computer-generated visual stimuli. Ipc neurons responded to a variety of moving or flashing stimuli as long as those stimuli were small.

View Article and Find Full Text PDF

Optical recording techniques were applied to the turtle cerebellum to localize synchronous responses to microstimulation of its cortical layers and reveal the cerebellum's three-dimensional processing. The in vitro yet intact cerebellum was first immersed in voltage-sensitive dye and its responses while intact were compared to those measured in thick cerebellar slices. Each slice is stained throughout its depth, even though the pial half appeared darker during epi-illumination and lighter during trans-illumination.

View Article and Find Full Text PDF

The turtle's cerebellum (Cb) is an unfoliated sheet, so the topography of its entire cortex can be easily studied physiologically by optical recordings. However, unlike the mammalian Cb, little is known about the topography of turtle Purkinje cells (PCs). Here, topography was examined using calbindin-D(28K) immunohistochemistry of adult and hatchling turtles (Trachemys scripta elegans, 2.

View Article and Find Full Text PDF

Physiological activity of the turtle cerebellar cortex (Cb), maintained in vitro, was recorded during microstimulation of inferior olive (IO). Previous single-electrode responses to such stimulation showed similar latencies across a limited region of Cb, yet those recordings lacked spatial and temporal resolution and the recording depth was variable. The topography and timing of those responses were reexamined using photodiode optical recordings.

View Article and Find Full Text PDF

Intrinsic properties and rotation-evoked responses of trochlear motoneurons were investigated in the turtle using an in vitro preparation consisting of the brain stem with attached temporal bones that retain functional semicircular canals. Motoneurons were divided into two classes based on intrinsic properties. The first class exhibited higher impedance (123.

View Article and Find Full Text PDF

In the intact vertebrate central nervous system, the quantal nature of synaptic transmission is difficult to measure because the postsynaptic sites may be distributed along a tortuous dendritic tree that cannot be readily clamped spatially to a uniform potential. Titrating the intact brain's extracellular concentration of calcium ions is also challenging because of its strong buffering mechanisms. In this study, using a whole brain with eye attached preparation, quantal neurotransmission was examined in the turtle brainstem in vitro, by recording from accessory optic system neurons that receive direct input from visually responsive retinal ganglion cells.

View Article and Find Full Text PDF

Multiunit activity during horizontal sinusoidal motion was recorded from pairs of oculomotor, trochlear, or abducens nerves of an in vitro turtle brainstem preparation that received inputs from intact semicircular canals. Responses of left oculomotor, right trochlear and right abducens nerves were approximately aligned with leftward head velocity, and that of the respective contralateral nerves were in-phase with rightward velocity. We examined the effect of sectioning or injecting lidocaine (1-2 microL of 0.

View Article and Find Full Text PDF

Neural tissues from fresh water turtles have been electrophysiologically studied in vitro due to their significant resistance to hypoxia. Such neurons have resting membrane potentials that are similar to intact animals and receive similar synaptic inputs evoked by sensory stimuli. One mechanism to reduce the brain's metabolic requirement in the absence of oxygenated blood flow was investigated by blocking adenosine receptors before and during hypoxia.

View Article and Find Full Text PDF

Recent physiological data have demonstrated that retinal slip, the sensory code of global visual pattern motion, results from complex interactions of excitatory and inhibitory visual inputs to neurons in the turtle's accessory optic system (the basal optic nucleus, BON). In the present study, the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), its synthetic enzyme, glutamic acid decarboxylase (GAD-67) and its receptor subtypes GABA(A) and GABA(B) receptors were localized within the BON. GABA antibodies revealed cell bodies and processes, whereas antibodies against GAD revealed a moderate density of immunoreactive puncta throughout the BON.

View Article and Find Full Text PDF

The interaction of excitatory and inhibitory inputs to the accessory optic system was studied with whole cell recordings in the turtle basal optic nucleus. Previous studies have shown that visual patterns, drifting in the same preferred direction, evoke excitatory and inhibitory postsynaptic events simultaneously. Analysis of the reversal potentials for these events and their pharmacological profile suggest that they are mediated by AMPA and GABA(A) receptors, respectively.

View Article and Find Full Text PDF

Responses of separate regions of rat cerebellar cortex (Cb) to inferior olive (IO) stimulation occur with the same latency despite large differences in climbing fiber (CF) lengths. Here, the olivocerebellar path of turtle was studied because its Cb is an unfoliated sheet on which measurements of latency and CF length can be made directly across its entire surface in vitro. During extracellular DC recordings at a given Cb position below the molecular layer, IO stimulation evoked a large negative field potential with a half-width duration of approximately 6.

View Article and Find Full Text PDF

Neural signals of the moving visual world are detected by a subclass of retinal ganglion cells that project to the accessory optic system in the vertebrate brainstem. We studied the dendritic morphologies and direction tuning of these brainstem neurons in turtle (Pseudemys scripta elegans) to understand their role in visual processing. Full-field checkerboard patterns were drifted on the contralateral retina while whole-cell recordings were made in the basal optic nucleus in an intact brainstem preparation in vitro.

View Article and Find Full Text PDF

Extracellular unit responses were recorded from the vestibular nucleus (VN) and medial longitudinal fasciculus during horizontal head rotation of an in vitro turtle brainstem in which the temporal bones remained attached. Units were characterized as type I or type II based on the responses to ipsiversive or contraversive rotation, respectively. Lidocaine injections (0.

View Article and Find Full Text PDF

Recent whole-cell recordings show that there are multiple synaptic inputs to the accessory optic system of the pond turtle Pseudemys scripta elegans (the basal optic nucleus, BON), suggesting a complex role in visual processing. The BON outputs have now been investigated using transport of diI, rhodamine-conjugated and biotinylated dextrans. Although transport was primarily anterograde, contralateral retinal ganglion cells were labeled retrogradely, confirming that the injection site was a retinal target.

View Article and Find Full Text PDF

The accessory optic system of the turtle (the basal optic nucleus, BON) receives both excitatory and inhibitory inputs that are direction-sensitive. When the dorsal midbrain is ablated, only the monosynaptic direction-sensitive input from the retina to the BON remains. To better understand the central visual processing performed by the accessory optic system, this study identifies the neurotransmitters and their receptors that mediate the synaptic excitation and inhibition of BON cells.

View Article and Find Full Text PDF