Publications by authors named "Michael Antolin"

Relief from the effects of epidemics may signal the start of low-level disease persistence.

View Article and Find Full Text PDF

Interdisciplinary approaches are merited when attempting to understand the complex and idiosyncratic processes driving the spillover of pathogens from wildlife and vector species to human populations. Public health data are often available for zoonotic pathogens but can lead to erroneous conclusions if the data have been spatially or temporally aggregated. As an illustration, we use human Lyme disease incidence data as a case study to examine correlations between mammalian biodiversity, fried chicken restaurants and obesity rates on human disease incidence.

View Article and Find Full Text PDF

Many pathogens infect multiple hosts, and spillover from domestic to wild species poses a significant risk of spread of diseases that threaten wildlife and humans. Documentation of cross-species transmission, and unraveling the mechanisms that drive it, remains a challenge. Focusing on co-occurring domestic and wild felids, we evaluate possible transmission mechanisms and evidence of spillover of " (), an erythrocytic bacterial parasite of cats.

View Article and Find Full Text PDF

Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species.

View Article and Find Full Text PDF

Two recent articles were written in response to our paper "Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing scans of adaptation." While we agree with some of the comments made by the authors of these two response papers, we still believe caution should be employed in RADseq studies that aim to detect loci that contribute to adaptation. In this rebuttal, we evaluate the key points made in these papers, attempt to identify a middle ground and make suggestions for responsibly conducting future studies to understand the genomewide mechanisms of adaptation.

View Article and Find Full Text PDF

Understanding how and why populations evolve is of fundamental importance to molecular ecology. Restriction site-associated DNA sequencing (RADseq), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations.

View Article and Find Full Text PDF

Bioassays of native cervid hosts have established the presence of infectious chronic wasting disease (CWD) prions in saliva, blood, urine, and feces of clinically diseased and pre-clinical infected deer. The intra-host trafficking of prions from the time of initial infection to shedding has been less well defined. We created a discrete-time compartmentalized model to simulate the misfolding catalysis, trafficking, and shedding of infectious prions throughout the organ systems of CWD-infected cervids.

View Article and Find Full Text PDF

Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods).

View Article and Find Full Text PDF

Infectious diseases that are transmitted from wildlife hosts to humans, such as the Ebola virus and MERS virus, can be difficult to understand because the pathogens emerge from complex multifaceted ecological interactions. We use a wildlife-pathogen system-prairie dogs (Cynomys ludovicianus) and the plague bacterium (Yersinia pestis)-to describe aspects of disease ecology that apply to many cases of emerging infectious disease. We show that the monitoring and surveillance of hosts and vectors during the buildup to disease outbreaks are crucial for understanding pathogen-transmission dynamics and that a community-ecology framework is important to identify reservoir hosts.

View Article and Find Full Text PDF

Epidemics of chronic wasting disease (CWD) of North American Cervidae have potential to harm ecosystems and economies. We studied a migratory population of mule deer (Odocoileus hemionus) affected by CWD for at least three decades using a Bayesian framework to integrate matrix population and disease models with long-term monitoring data and detailed process-level studies. We hypothesized CWD prevalence would be stable or increase between two observation periods during the late 1990s and after 2010, with higher CWD prevalence making deer population decline more likely.

View Article and Find Full Text PDF

Biopsy of rectal mucosa-associated lymphoid tissue provides a useful, but imperfect, live-animal test for chronic wasting disease (CWD) in mule deer (Odocoileus hemionus). It is difficult and expensive to complete these tests on free-ranging animals, and wildlife health managers will benefit from methods that can accommodate test results of varying quality. To this end, we developed a hierarchical Bayesian model to estimate the probability that an individual is infected based on test results.

View Article and Find Full Text PDF

Background: In western North America, plague epizootics caused by Yersinia pestis appear to sweep across landscapes, primarily infecting and killing rodents, especially ground squirrels and prairie dogs. During these epizootics, the risk of Y. pestis transmission to humans is highest.

View Article and Find Full Text PDF

Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs.

View Article and Find Full Text PDF

If a parasite is not detected during a survey, one of two explanations is possible: the parasite was truly absent or it was present but not detected. We fit occupancy models to account for imperfect detection when combing fleas (Siphonaptera) from black-tailed prairie dogs (Cynomys ludovicianus) during June-August 2012 in the Vermejo Park Ranch, New Mexico, USA. With the use of detection histories from combing events during monthly trapping sessions, we fit occupancy models for two flea species: Oropsylla hirusta (a prairie dog specialist) and Pulex simulans (a generalist).

View Article and Find Full Text PDF

Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus).

View Article and Find Full Text PDF

Plague, caused by the bacterium Yersinia pestis, triggers die-offs in colonies of black-tailed prairie dogs (Cynomys ludovicianus), but the time-frame of plague activity is not well understood. We document plague activity in fleas from prairie dogs and their burrows on three prairie dog colonies that suffered die-offs. We demonstrate that Y.

View Article and Find Full Text PDF

We used a quantitative genetics approach and estimated broad sense heritability (h2b) of myxospore count and the number of genes involved in myxospore formation to gain a better understanding of how resistance to Myxobolus cerebralis, the parasite responsible for whirling disease, is inherited in rainbow trout Oncorhynchus mykiss. An M. cerebralis-resistant strain of rainbow trout, the German Rainbow (GR), and a wild, susceptible strain of rainbow trout, the Colorado River Rainbow (CRR), were spawned to create 3 intermediate crossed populations (an F1 cross, F2 intercross, and a B2 backcross between the F1 and the CRR).

View Article and Find Full Text PDF

The interface between evolutionary biology and the biomedical sciences promises to advance understanding of the origins of genetic and infectious diseases in humans, potentially leading to improved medical diagnostics, therapies, and public health practices. The biomedical sciences also provide unparalleled examples for evolutionary biologists to explore. However, gaps persist between evolution and medicine, for historical reasons and because they are often perceived as having disparate goals.

View Article and Find Full Text PDF

In some rodent species frequently exposed to plague outbreaks caused by Yersinia pestis, resistance to the disease has evolved as a population trait. As a first step in determining if plague resistance has developed in black-tailed prairie dogs (Cynomys ludovicianus), animals captured from colonies in a plague-free region (South Dakota) and two plague-endemic regions (Colorado and Texas) were challenged with Y. pestis at one of three doses (2.

View Article and Find Full Text PDF

Host populations for the plague bacterium, Yersinia pestis, are highly variable in their response to plague ranging from near deterministic extinction (i.e., epizootic dynamics) to a low probability of extinction despite persistent infection (i.

View Article and Find Full Text PDF
Article Synopsis
  • The wild-rice genus Zizania consists of four species, with three in North America and one in eastern Asia, showing a monophyletic structure in their phylogeny.
  • DNA analysis indicated that the divergence between the North American species and the eastern Asian Z. latifolia occurred approximately 3.74 million years ago, suggesting a migration route through the Bering land bridge.
  • Evidence of incomplete lineage sorting and low-frequency introgression was found between Z. palustris and Z. aquatica, reflecting their complex evolutionary relationships.
View Article and Find Full Text PDF

Mormon crickets, large flightless katydids from western North America, occur in two forms that differ dramatically in population density and daily movement distances. The low-density form is small and cryptic and moves <1 m/d, while the high-density form is large and dark colored and travels up to 1-2 km/d in migratory bands. We determined daytime body temperatures and measured resting metabolic rate (RMR) and maximal aerobic metabolic rate (MMR) in forced exercise across a 10 degrees - 40 degrees C temperature range.

View Article and Find Full Text PDF

Black-tailed prairie dogs (Cynomys ludovicianus) on the Great Plains of the United States are highly susceptible to plague, caused by the bacterium Yersinia pestis, with mortality on towns during plague epizootics often approaching 100%. The ability of flea-borne transmission to sustain disease spread has been questioned because of inefficiency of flea vectors. However, even with low individual efficiency, overall transmission can be increased if flea abundance (the number of fleas on hosts) increases.

View Article and Find Full Text PDF