Purpose: High dose-rate (HDR) brachytherapy is integral for the treatment of numerous cancers. Preclinical studies involving HDR brachytherapy are limited. We aimed to describe a novel platform allowing multi-modality studies with clinical HDR brachytherapy and external beam irradiators, establish baseline dosimetry standard of a preclinical orthovoltage irradiator, to determine accurate dosimetric methods.
View Article and Find Full Text PDFInhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead , we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution.
View Article and Find Full Text PDFMevion's single-room HYPERSCAN proton therapy system employs a proton multileaf collimator called the adaptive aperture (AA), which collimates individual spots in the proton delivery as determined by the Treatment Planning System (TPS). The purpose of this study is to assess the dosimetric benefits of the AA, specifically in the dynamic aperture (DA) mode, and evaluate its impact on proton treatment plan quality as compared to a traditional pencil beam scanning (PBS) system (Varian ProBeam). The spot dose distributions with dynamic collimation (DA), a unique AA shape for each energy layer, and with static collimation (SA), a single AA collimation shape shared by all energy layers per field, were calculated and compared with the spot dose distribution of the Varian ProBeam proton therapy system.
View Article and Find Full Text PDFAm J Ophthalmol Case Rep
December 2023
Purpose: To describe a neuro-ophthalmic presentation of a phenotypically heterogeneous mitochondrial DNA variant.
Observations: A 10-year-old female with gross motor developmental delay, absence seizures and ataxia subacutely developed poor near acuity and asthenopia. She was found to have accommodative insufficiency, impaired supraduction and convergence retraction nystagmus leading to a diagnosis of dorsal midbrain syndrome.
Ultramicroscopy
October 2023
Imaging in electron microscopy is adversely affected by partial electron spatial and temporal coherence. Temporal coherence has been treated theoretically in the past using the method pioneered fifty years ago by Hanßen and Trepte, who assumed a Gaussian energy distribution. However, state-of-the-art instruments employ field emission (FE) sources that emit electrons with a non-Gaussian energy distribution.
View Article and Find Full Text PDFParkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS).
View Article and Find Full Text PDFSynthesis of medium-sized rings is known to be challenging due to high transannular strain especially for 9- and 10-membered rings. Herein we report design and synthesis of unprecedented 9- and 10-membered purine 8,5'-cyclonucleosides as the first cyclonucleoside PRMT5 inhibitors. The cocrystal structure of PRMT5:MEP50 in complex with the synthesized 9-membered cyclonucleoside 1 revealed its binding mode in the SAM binding pocket of PRMT5.
View Article and Find Full Text PDFThe use of single-crystal substrates as templates for the epitaxial growth of single-crystal overlayers has been a primary principle of materials epitaxy for more than 70 years. Here we report our finding that, though counterintuitive, single-crystal 2D materials can be epitaxially grown on twinned crystals. By establishing a geometric principle to describe 2D materials alignment on high-index surfaces, we show that 2D material islands grown on the two sides of a twin boundary can be well aligned.
View Article and Find Full Text PDFStereochemically and structurally complex cyclic dinucleotide-based stimulator of interferon genes (STING) agonists were designed and synthesized to access a previously unexplored chemical space. The assessment of biochemical affinity and cellular potency, along with computational, structural, and biophysical characterization, was applied to influence the design and optimization of novel STING agonists, resulting in the discovery of MK-1454 as a molecule with appropriate properties for clinical development. When administered intratumorally to immune-competent mice-bearing syngeneic tumors, MK-1454 exhibited robust tumor cytokine upregulation and effective antitumor activity.
View Article and Find Full Text PDFThe introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents.
View Article and Find Full Text PDFIdentification of low-dose, low-molecular-weight, drug-like inhibitors of protein-protein interactions (PPIs) is a challenging area of research. Despite the challenges, the therapeutic potential of PPI inhibition has driven significant efforts toward this goal. Adding to recent success in this area, we describe herein our efforts to optimize a novel purine carboxylic acid-derived inhibitor of the HDM2-p53 PPI into a series of low-projected dose inhibitors with overall favorable pharmacokinetic and physical properties.
View Article and Find Full Text PDFPathway activating mutations of the transcription factor NRF2 and its negative regulator KEAP1 are strongly correlative with poor clinical outcome with pemetrexed/carbo(cis)platin/pembrolizumab (PCP) chemo-immunotherapy in lung cancer. Despite the strong genetic support and therapeutic potential for a NRF2 transcriptional inhibitor, currently there are no known direct inhibitors of the NRF2 protein or its complexes with MAF and/or DNA. Herein we describe the design of a novel and high-confidence homology model to guide a medicinal chemistry effort that resulted in the discovery of a series of peptides that demonstrate high affinity, selective binding to the Antioxidant Response Element (ARE) DNA and thereby displace NRF2-MAFG from its promoter, which is an inhibitory mechanism that to our knowledge has not been previously described.
View Article and Find Full Text PDFBackground: We present the first report comparing early toxicity outcomes with high-dose rate brachytherapy (HDR-BT) boost upfront versus intensity modulated RT (IMRT) upfront combined with androgen deprivation therapy (ADT) as definitive management for intermediate risk or higher prostate cancer.
Methods And Materials: We reviewed all non-metastatic prostate cancer patients who received HDR-BT boost from 2014 to 2019. HDR-BT boost was offered to patients with intermediate-risk disease or higher.
We present experimental observations of high order phase contrast in aberration corrected low energy electron microscopy (AC-LEEM). Phase contrast produced by atomic steps on a Ag (111) surface exhibits prominent high order interference fringes, which have not been reported before. These phase contrast features depend upon defocus and incident electron energy, similar to the prominent first order fringes observed previously and in agreement with Fourier optics (FO) model predictions.
View Article and Find Full Text PDFPI3K-δ mediates key immune cell signaling pathways and is a target of interest for treatment of oncological and immunological disorders. Here we describe the discovery and optimization of a novel series of PI3K-δ selective inhibitors. We first identified hits containing an isoindolinone scaffold using a combined ligand- and receptor-based virtual screening workflow, and then improved potency and selectivity guided by structural data and modeling.
View Article and Find Full Text PDFThe approvals of idelalisib and duvelisib have validated PI3Kδ inhibitors for the treatment for hematological malignancies driven by the PI3K/AKT pathway. Our program led to the identification of structurally distinct heterocycloalkyl purine inhibitors with excellent isoform and kinome selectivity; however, they had high projected human doses. Improved ligand contacts gave potency enhancements, while replacement of metabolic liabilities led to extended half-lives in preclinical species, affording PI3Kδ inhibitors with low once-daily predicted human doses.
View Article and Find Full Text PDFPurpose: To evaluate the targetability of late-stage cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced hyperthermia (HT) as an adjuvant to radiation therapy (RT).
Methods: Seventy-nine cervical cancer patients (stage IIIB-IVA) who received RT with lesions visible on positron emission tomography-computed tomography (PET-CT) were retrospectively analyzed for targetability using a commercially-available HT-capable MRgHIFU system. Targetability was assessed for both primary targets and/or any metastatic lymph nodes using both posterior (supine) and anterior (prone) patient setups relative to the transducer.
Purpose: To comprehensively characterize dosimetric differences between calculations with a commercial model-based dose calculation algorithm (MBDCA) and the TG-43 formalism in application to accelerated partial breast irradiation (APBI) with the strut-adjusted volume implant (SAVI) applicator.
Methods: Dose for 100 patients treated with the SAVI applicator was recalculated with an MBDCA for comparison to dose calculated via TG-43. For every pair of dose calculations, dose-volume histogram (DVH) metrics including V90%, V95%, V100%, V150%, and V200% for the PTV_EVAL were compared.
The production of high-quality two-dimensional (2D) materials is essential for the ultimate performance of single layers and their hybrids. Hexagonal boron nitride (-BN) is foreseen to become the key 2D hybrid and packaging material since it is insulating, impermeable, flat, transparent, and chemically inert, though it is difficult to attain in ultimate quality. Here, a scheme is reported for producing single layer -BN that shows higher quality in view of mosaicity and strain variations than material from chemical vapor deposition (CVD).
View Article and Find Full Text PDFPurpose: To characterize temperature fields and tissue damage profiles of large-volume hyperthermia (HT) induced by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) in deep and superficial targets in a porcine model.
Methods: Nineteen HT sessions were performed with a commercial MRgHIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, ON, Canada) in hind leg muscles of eight pigs with temperature fields of cross-sectional diameter of 58-mm.
Protein arginine methyltransferase 5 (PRMT5) belongs to a family of enzymes that regulate the posttranslational modification of histones and other proteins via methylation of arginine. Methylation of histones is linked to an increase in transcription and regulates a manifold of functions such as signal transduction and transcriptional regulation. PRMT5 has been shown to be upregulated in the tumor environment of several cancer types, and the inhibition of PRMT5 activity was identified as a potential way to reduce tumor growth.
View Article and Find Full Text PDFPharmacological activation of the STING (stimulator of interferon genes)-controlled innate immune pathway is a promising therapeutic strategy for cancer. Here we report the identification of MSA-2, an orally available non-nucleotide human STING agonist. In syngeneic mouse tumor models, subcutaneous and oral MSA-2 regimens were well tolerated and stimulated interferon-β secretion in tumors, induced tumor regression with durable antitumor immunity, and synergized with anti-PD-1 therapy.
View Article and Find Full Text PDF