Publications by authors named "Michael Alburquerque"

Article Synopsis
  • The study explores a novel method for multiple sequence alignments in bioinformatics using natural language processing (NLP) techniques.
  • Researchers developed BetaAlign, a deep learning aligner that outperforms traditional alignment algorithms and offers highly accurate results by leveraging transformer models.
  • The findings highlight the potential of AI-based approaches to improve alignment tasks and advance phylogenomics, with training data and tools made available through Hugging Face.
View Article and Find Full Text PDF

The computational search for the maximum-likelihood phylogenetic tree is an NP-hard problem. As such, current tree search algorithms might result in a tree that is the local optima, not the global one. Here, we introduce a paradigm shift for predicting the maximum-likelihood tree, by approximating long-term gains of likelihood rather than maximizing likelihood gain at each step of the search.

View Article and Find Full Text PDF

Motivation: Insertions and deletions (indels) of short DNA segments, along with substitutions, are the most frequent molecular evolutionary events. Indels were shown to affect numerous macro-evolutionary processes. Because indels may span multiple positions, their impact is a product of both their rate and their length distribution.

View Article and Find Full Text PDF

In the last decade, advances in sequencing technology have led to an exponential increase in genomic data. These new data have dramatically changed our understanding of the evolution and function of genes and genomes. Despite improvements in sequencing technologies, identifying contaminated reads remains a complex task for many research groups.

View Article and Find Full Text PDF

Type III effectors are proteins injected by Gram-negative bacteria into eukaryotic hosts. In many plant and animal pathogens, these effectors manipulate host cellular processes to the benefit of the bacteria. Type III effectors are secreted by a type III secretion system that must "classify" each bacterial protein into one of two categories, either the protein should be translocated or not.

View Article and Find Full Text PDF