Publications by authors named "Michael Agy"

The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the mucosal immune system in rhesus macaques responds to simian immunodeficiency virus (SIV) following high-dose intrarectal inoculation, revealing insights into early viral replication and systemic infection during acute phases.
  • At 3 days post-inoculation, a strong host transcriptional response was noted, but lacking antiviral immunity genes; instead, genes related to cell adhesion and cytoskeletal organization were differentially expressed.
  • By 12 days post-inoculation, immune function genes were more prominent, indicating that mucosal integrity is compromised early, potentially exacerbating tissue damage and inflammation during peak viral loads.
View Article and Find Full Text PDF

A 2.25-y-old male pigtailed macaque (Macaca nemestrina) was experimentally irradiated and received a bone marrow transplant. After transplantation and engraftment, the macaque had unexpected recurring pancytopenia and dependent edema of the prepuce, scrotum, and legs.

View Article and Find Full Text PDF

Background: Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important category of drugs for both chemotherapy and prevention of human immunodeficiency virus type 1 (HIV-1) infection. However, current non-human primate (NHP) models utilizing simian immunodeficiency virus (SIV) or commonly used chimeric SHIV (SIV expressing HIV-1 envelope) are inadequate due to the insensitivity to NNRTIs. To develop a NHP model for evaluation of NNRTI compounds, we characterized a RT-SHIV virus that was assembled by replacing the SIV mac239 reverse transcriptase (RT) with that of HIV-1HXB2.

View Article and Find Full Text PDF

Specific pathogen-free (SPF) macaque colonies are now requested frequently as a resource for research. Such colonies were originally conceived as a means to cull diseased animals from research-dedicated colonies, with the goal of eliminating debilitating or fatal infectious agents from the colony to improve the reproductive capacity of captive research animals. The initial pathogen of concern was Mycobacterium tuberculosis (M.

View Article and Find Full Text PDF

Background: A 4-week, uninterrupted treatment with 9-(2-phosphonyl-methoxypropyly)adenine (PMPA, commonly called tenofovir) completely prevents simian immunodeficiency virus (SIVmne) infection in cynomolgus macaques if treatment begins within 24 hours after SIVmne inoculation, but is less effective if treatment is delayed or duration of treatment is shortened. Critical factors for efficacy include timing and duration of treatment, potency of antiretroviral drug and a contribution from antiviral immune responses. Therefore, we evaluated the impact of one or more treatment interruptions plus SIVmne re-exposures on efficacy of PMPA treatment to prevent SIVmne infection in cynomolgus macaques.

View Article and Find Full Text PDF

The global impact of HIV/AIDS intensifies the need for a preventive vaccine and nonhuman primate models can help provide critical insights into effective immunity. Pigtail macaques (Macaca nemestrina) are increasingly studied as a nonhuman primate model for AIDS. We compared the virologic and immunologic characteristics of HIV-1, SIV, and SHIV infection of naive pigtail macaques across a series of preclinical HIV vaccine studies.

View Article and Find Full Text PDF

It has previously been shown in macaques that individual animals exhibit varying responses to challenge with the same strain of SIV. We attempted to elucidate these differences using functional genomics and correlate them to biological response. Unfractionated PBMC from three rhesus macaques were isolated, activated, and infected with SIVmac239.

View Article and Find Full Text PDF

We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M.

View Article and Find Full Text PDF

Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus.

View Article and Find Full Text PDF

We determined if the genetic adjuvants, granulocyte-macrophage colony stimulating factor (GM-CSF) and B7-2, could improve the immunogenicity and efficacy of an HIV-2 DNA vaccine. The vaccine consisted of the HIV-2 tat, nef, gag, and env genes synthesized using optimized codons and formulated with cationic liposomes. Baboons (Papio cynocephalus hamadryas) were immunized by the intramuscular, intradermal, and intranasal routes with these expression constructs and challenged with HIV-2(UC2) by the intravaginal route.

View Article and Find Full Text PDF

The cyanobacterial protein cyanovirin-N (CV-N) potently inactivates diverse strains of HIV-1 and other lentiviruses due to irreversible binding of CV-N to the viral envelope glycoprotein gp120. In this study, we show that recombinant CV-N effectively blocks HIV-1(Ba-L) infection of human ectocervical explants. Furthermore, we demonstrate the in vivo efficacy of CV-N gel in a vaginal challenge model by exposing CV-N-treated female macaques (Macaca fascicularis) to a pathogenic chimeric SIV/HIV-1 virus, SHIV89.

View Article and Find Full Text PDF

A chemokine receptor from the seven-transmembrane-domain G-protein-coupled receptor superfamily is an essential coreceptor for the cellular entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) strains. To investigate nonhuman primate CC-chemokine receptor 5 (CCR5) homologue structure and function, we amplified CCR5 DNA sequences from peripheral blood cells obtained from 24 representative species and subspecies of the primate suborders Prosimii (family Lemuridae) and Anthropoidea (families Cebidae, Callitrichidae, Cercopithecidae, Hylobatidae, and Pongidae) by PCR with primers flanking the coding region of the gene. Full-length CCR5 was inserted into pCDNA3.

View Article and Find Full Text PDF

Although most HIV-1 infections worldwide result from heterosexual transmission, most vaccine candidates have focused on induction of systemic immunity and protection. We hypothesized that combining systemic priming with mucosal boosting would induce mucosal immunity that would protect from intravaginal challenge. Macaques were primed systemically with recombinant vaccinia viruses and boosted mucosally using inactivated SHIV(89.

View Article and Find Full Text PDF