RNA is a central and universal mediator of genetic information underlying the diversity of cell types and cell states, which together shape tissue organization and organismal function across species and lifespans. Despite numerous advances in RNA sequencing technologies and the massive accumulation of transcriptome datasets across the life sciences, the dearth of technologies that use RNAs to observe and manipulate cell types remains a bottleneck in biology and medicine. Here we describe CellREADR (Cell access through RNA sensing by Endogenous ADAR), a programmable RNA-sensing technology that leverages RNA editing mediated by ADAR to couple the detection of cell-defining RNAs with the translation of effector proteins.
View Article and Find Full Text PDFHippocampal place cells contribute to mammalian spatial navigation and memory formation. Numerous models have been proposed to explain the location-specific firing of this cognitive representation, but the pattern of excitatory synaptic input leading to place firing is unknown, leaving no synaptic-scale explanation of place coding. Here we used resonant scanning two-photon microscopy to establish the pattern of synaptic glutamate input received by CA1 place cells in behaving mice.
View Article and Find Full Text PDFHippocampal place cell ensembles form a cognitive map of space during exposure to novel environments. However, surprisingly little evidence exists to support the idea that synaptic plasticity in place cells is involved in forming new place fields. Here we used high-resolution functional imaging to determine the signaling patterns in CA1 soma, dendrites, and axons associated with place field formation when mice are exposed to novel virtual environments.
View Article and Find Full Text PDFNicotine addiction is associated with the development of tolerance and the emergence of withdrawal symptoms upon cessation of chronic nicotine administration. Changes in cognition, including deficits in learning, are one of the most common withdrawal symptoms reported by smokers. However, the neural substrates of tolerance to the effects of nicotine on learning and the substrates of withdrawal deficits in learning are unknown, and in fact it is unclear whether a common mechanism is involved in both.
View Article and Find Full Text PDFNicotine is known to enhance long-term hippocampus dependent learning and memory in both rodents and humans via its activity at nicotinic acetylcholinergic receptors (nAChRs). However, the molecular basis for the nicotinic modulation of learning is incompletely understood. Both the mitogen activated protein kinases (MAPKs) and cAMP response element binding protein (CREB) are known to be integral to the consolidation of long-term memory and the disruption of MAPKs and CREB are known to abrogate some of the cognitive effects of nicotine.
View Article and Find Full Text PDFA predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdrawal-induced cognitive deficits.
View Article and Find Full Text PDFRationale: Spatial and novel object recognition learning is different from learning that uses aversive or appetitive stimuli to shape acquisition because no overt contingencies are needed. While this type of learning occurs on a daily basis, little is known about how nicotine administration affects it.
Objectives: To determine the effects of acute, chronic, and withdrawal from chronic nicotine on two related but distinct incidental learning tasks, novel and spatial object recognition.