Myelin loss induces deficits in action potential propagation that result in neural dysfunction and contribute to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that seek to restore neural function are clinical imperatives. Here, we used two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice.
View Article and Find Full Text PDFThe generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo.
View Article and Find Full Text PDFThe generation of new myelin-forming oligodendrocytes in the adult CNS is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions suggesting that local cues drive regional differences in myelination and the capacity for regeneration. Yet, the determination of regional variability in oligodendrocyte cell behavior is limited by the inability to monitor the dynamics of oligodendrocytes and their transcriptional subpopulations in white matter of the living brain.
View Article and Find Full Text PDFMyelin plasticity occurs when newly formed and pre-existing oligodendrocytes remodel existing patterns of myelination. Myelin remodeling occurs in response to changes in neuronal activity and is required for learning and memory. However, the link between behavior-induced neuronal activity and circuit-specific changes in myelination remains unclear.
View Article and Find Full Text PDF: Three-photon (3P) microscopy significantly increases the depth and resolution of imaging due to decreased scattering and nonlinear optical sectioning. Simultaneous excitation of multiple fluorescent proteins is essential to studying multicellular interactions and dynamics in the intact brain. : We characterized the excitation laser pulses at a range of wavelengths for 3P microscopy, and then explored the application of tdTomato or mScarlet and EGFP for dual-color single-excitation structural 3P imaging deep in the living mouse brain.
View Article and Find Full Text PDFHaving observed that electrical spinal cord stimulation and training enabled four patients with paraplegia with motor complete paralysis to regain voluntary leg movement, the underlying mechanisms involved in forming the newly established supraspinal-spinal functional connectivity have become of great interest. van den Brand et al. ( 336: 1182-1185, 2012) subsequently, demonstrated the recovery, in response to spinal electro-neuromodulation and locomotor training, of voluntary stepping of the lower limbs in rats that received a lesion that is assumed to eliminate all long-descending cortical axons that project to lumbosacral segments.
View Article and Find Full Text PDFOligodendrocyte loss in neurological disease leaves axons vulnerable to damage and degeneration, and activity-dependent myelination may represent an endogenous mechanism to improve remyelination following injury. Here we report that, while learning a forelimb reach task transiently suppresses oligodendrogenesis, it subsequently increases oligodendrocyte precursor cell differentiation, oligodendrocyte generation and myelin sheath remodeling in the forelimb motor cortex. Immediately following demyelination, neurons exhibit hyperexcitability, learning is impaired and behavioral intervention provides no benefit to remyelination.
View Article and Find Full Text PDFOligodendrocyte lineage cells (oligodendroglia) and neurons engage in bidirectional communication throughout life to support healthy brain function. Recent work shows that changes in neuronal activity can modulate proliferation, differentiation, and myelination to support the formation and function of neural circuits. While oligodendroglia express a diverse collection of receptors for growth factors, signaling molecules, neurotransmitters and neuromodulators, our knowledge of the intracellular signaling pathways that are regulated by neuronal activity remains largely incomplete.
View Article and Find Full Text PDFOlfactory ensheathing cells (OECs) are unique glia that support axon outgrowth in the olfactory system, and when used as cellular therapy after spinal cord injury, improve recovery and axon regeneration. Here we assessed the effects of combining OEC transplantation with another promising therapy, epidural electrical stimulation during a rehabilitative motor task. Sprague-Dawley rats received a mid-thoracic transection and transplantation of OECs or fibroblasts (FBs) followed by lumbar stimulation while climbing an inclined grid.
View Article and Find Full Text PDFEctopically expressed, human B-domainless (hB) factor 8 (F8) in platelets improves hemostasis in hemophilia A mice in several injury models. However, in both a cuticular bleeding model and a cremaster laser arteriole/venule injury model, there were limitations to platelet-derived (p) hBF8 efficacy, including increased clot embolization. We now address whether variants of F8 with enhanced activity, inactivation resistant F8 (IR8) and canine (c) BF8, would improve clotting efficacy.
View Article and Find Full Text PDFWe previously reported on a novel compound (Compound 1; RUC-1) identified by high-throughput screening that inhibits human alphaIIbbeta3. RUC-1 did not inhibit alphaVbeta3, suggesting that it interacts with alphaIIb, and flexible ligand/rigid protein molecular docking studies supported this speculation. We have now studied RUC-1's effects on murine and rat platelets, which are less sensitive than human to inhibition by Arg-Gly-Asp (RGD) peptides due to differences in the alphaIIb sequences contributing to the binding pocket.
View Article and Find Full Text PDFCompared with human platelets, rodent platelets are less responsive to peptides and peptidomimetics containing an arginine-glycine-aspartic acid (RGD) motif. Using chimeric human-rat alphaIIbbeta3 molecules, we found that this difference in Arg-Gly-Asp-Ser (RGDS) sensitivity was the result of amino acid substitutions at residues 157, 159, and 162 in the W3:4-1 loop and an Asp-His replacement at residue 232 in the W4:4-1 loop of the alphaIIb beta propeller. Introducing the entire rat W3:4-1 and W4:4-1 loops into human alphaIIbbeta3 also decreased the inhibitory effect of the disintegrins, echistatin and eristostatin, and the alphaIIbbeta3 antagonists, tirofiban and eptifibatide, on fibrinogen binding, whereas the specific point mutations did not.
View Article and Find Full Text PDFWe mapped the DNase I-hypersensitive sites (DHSS) of the serglycin gene in resting and phorbol 12-myristate 13-acetate (PMA)-stimulated human erythroleukemia (HEL) and CHRF 288-11 cells, which have megakaryocytic characteristics, and HL-60 promyelocytic leukemia cells. We compared these DHSS with those of normal primary neutrophils and human umbilical vein endothelial cells. Several DHSS appear to be involved in regulating the level of endogenous expression and in the PMA response of hematopoietic cell lines.
View Article and Find Full Text PDFActivated platelets release their granule content in a concentrated fashion at sites of injury. We examined whether ectopically expressed factor VIII in developing megakaryocytes would be stored in alpha-granules and whether its release from circulating platelets would effectively ameliorate bleeding in a factor VIIInull mice model. Using the proximal glycoprotein 1b alpha promoter to drive expression of a human factor VIII cDNA construct, transgenic lines were established.
View Article and Find Full Text PDFThe alphaIIb/beta3-integrin receptor is present at high levels only in megakaryocytes and platelets. Its presence on platelets is critical for hemostasis. The tissue-specific nature of this receptor's expression is secondary to the restricted expression of alphaIIb, and studies of the alphaIIb proximal promoter have served as a model of a megakaryocyte-specific promoter.
View Article and Find Full Text PDF