Movement is fundamental to human and animal life, emerging through interaction of complex neural, muscular, and skeletal systems. Study of movement draws from and contributes to diverse fields, including biology, neuroscience, mechanics, and robotics. OpenSim unites methods from these fields to create fast and accurate simulations of movement, enabling two fundamental tasks.
View Article and Find Full Text PDFImpacts are instantaneous, computationally efficient approximations of collisions. Current impact models sacrifice important physical principles to achieve that efficiency, yielding qualitative and quantitative errors when applied to simultaneous impacts in spatial multibody systems. We present a new impact model that produces behaviour similar to that of a detailed compliant contact model, while retaining the efficiency of an instantaneous method.
View Article and Find Full Text PDFProc ASME Des Eng Tech Conf
August 2013
Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody.
View Article and Find Full Text PDFPhysics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2012
Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs.
View Article and Find Full Text PDFMultibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations.
View Article and Find Full Text PDFProc IEEE Inst Electr Electron Eng
August 2008
Physics-based simulation is needed to understand the function of biological structures and can be applied across a wide range of scales, from molecules to organisms. Simbios (the National Center for Physics-Based Simulation of Biological Structures, http://www.simbios.
View Article and Find Full Text PDF