Publications by authors named "Michael A Schutz"

The safety of uncooked fermented, dried sausages relies upon controlled fermentation and drying that inactivates pathogenic bacteria. Current guidelines for the production of fermented sausages by the United States Department of Agriculture (USDA) Food Safety Inspection Services (FSIS) and related research highlight specific safety parameters. The confidence that processing steps, which do not include cooking, inherently mitigate microbial risks, is challenged by the resilience of pathogens in the dry and acidic environments of these food products.

View Article and Find Full Text PDF

Adaptive finite element models have allowed researchers to test hypothetical relationships between the local mechanical environment and the healing of bone fractures. However, their predictive power has not yet been demonstrated by testing hypotheses ahead of experimental testing. In this study, an established mechano-biological scheme was used in an iterative finite element simulation of sheep tibial osteotomy healing under a hypothetical fixation regime, "inverse dynamisation".

View Article and Find Full Text PDF

The treatment of long bone defects and non-unions is still a major clinical and socio-economical problem. In addition to the non-operative therapeutic options, such as the application of various forms of electricity, extracorporeal shock wave therapy and ultrasound therapy, which are still in clinical use, several operative treatment methods are available. No consensus guidelines are available and the treatments of such defects differ greatly.

View Article and Find Full Text PDF
Article Synopsis
  • Current bone defect treatments mainly use autografts and allografts which have good properties for bone growth but also significant drawbacks.
  • This study aimed to test different scaffold materials (with similar mechanical properties to bone grafts) in a sheep model to see how well they promoted bone regeneration over 12 weeks.
  • Results showed that autografts produced the most new bone, while polymer and ceramic composites created the least, suggesting that biologically inactive materials could be improved with additional active treatments, like bone morphogenetic proteins.
View Article and Find Full Text PDF

Recently, research has focused on bone marrow derived multipotent mesenchymal precursor cells (MPC) and osteoblasts (OB) for clinical use in bone engineering. Prior to clinical application, cell based treatment concepts need to be evaluated in preclinical, large animal models. Sheep in particular are considered a valid model for orthopaedic and trauma related research.

View Article and Find Full Text PDF

An iterative method for the fit optimisation of a pre-contoured fracture fixation plate for a given bone data set is presented. Both plate shape optimisation and plate fit quantification are conducted in a virtual environment utilising computer graphical methods and 3D bone and plate models. Two optimised shapes of the undersurface of an existing distal medial tibia plate were generated based on a dataset of 45 3D bone models reconstructed from computed tomography image data of Japanese tibiae.

View Article and Find Full Text PDF

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties; however, they are limited in access and availability and associated with donor-site morbidity, hemorrhage, risk of infection, insufficient transplant integration, graft devitalization, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts.

View Article and Find Full Text PDF

Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration.

View Article and Find Full Text PDF

A considerable number of international research groups as well as commercial entities work on the development of new bone grafting materials, carriers, growth factors and specifically tissue-engineered constructs for bone regeneration. They are strongly interested in evaluating their concepts in highly reproducible large segmental defects in preclinical and large animal models. To allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools and act as a base for further directions to orthopaedic and tissue engineering developments, specifically translation into the clinic.

View Article and Find Full Text PDF

Objectives: With the development and popularization of minimally invasive surgical methods and implants for fracture fixation, it is increasingly important that the available implants are precontoured to the specific anatomic location for which they are designed. The objective of this study was to develop a noninvasive method and criteria for quantifying the fit of a distal periarticular medial tibia plate and to test the method on a small set of tibia models.

Methods: The undersurface of the plate was extracted from a digital model of the plate.

View Article and Find Full Text PDF