Publications by authors named "Michael A Roelens"

We demonstrate an 11 port count wavelength selective switch (WSS) supporting spatial superchannels of three spatial modes, based on the combination of photonic lanterns and a high-port count single-mode WSS.

View Article and Find Full Text PDF

We demonstrate a pulse-shaping technique that allows for spectrally resolved splitting of an input signal to multiple output ports. This ability enables reconfigurable creation of splitters with complex wavelength-dependent splitting ratios, giving similar flexibility to a Field Programmable Gate Array (FPGA) in electronics. Our technique can be used to create reprogrammable optical (interferometric) circuits, by emulating their multi-port spectral transfer functions instead of the traditional method of creating an interferometer by splitting and recombining the light with an added delay.

View Article and Find Full Text PDF

A model for characterizing the spectral response of the passband of Wavelength Selective Switches (WSS) is presented. We demonstrate that, in contrast to the commonly used supergaussian model, the presented model offers a more complete match to measured results, as it is based on the physical operation of the optical system. We also demonstrate that this model is better suited for calculation of WSS channel bandwidths, as well as predicting the final bandwidth of cascaded WSS modules.

View Article and Find Full Text PDF

We show the first simultaneous OSNR monitoring of two 40 Gb/s OOK and DPSK channels, using only a wavelength selective switch and two slow photodetectors. Our approach is modulation format and bit-rate independent and can easily be included in existing reconfigurable networks.

View Article and Find Full Text PDF

We demonstrate simultaneous pulse-shaping at different ports of a rapidly tunable wavelength selective switch at a base rate of 40 GHz, based on Fourier-domain pulse shaping. Various pulse bursts are generated and accurately characterized with a linear spectrographic method.

View Article and Find Full Text PDF

We demonstrate low-threshold supercontinuum generated in a highly nonlinear arsenic selenide chalcogenide nanowire with tailored dispersion. The tapered submicrometer chalcogenide fiber exhibits an ultrahigh nonlinearity, n(2) approximately 1.1x10(-17) m(2)/W and an effective mode area of 0.

View Article and Find Full Text PDF

We propose a new method for generating flat self-phase modulation (SPM)-broadened spectra based on seeding a highly nonlinear fiber (HNLF) with chirp-free parabolic pulses generated using linear pulse shaping in a superstructured fiber Bragg grating (SSFBG). We show that the use of grating reshaped parabolic pulses allows substantially better performance in terms of the extent of SPM-based spectral broadening and flatness relative to conventional hyperbolic secant (sech) pulses. We demonstrate both numerically and experimentally the generation of SPM-broadened pulses centred at 1542 nm with 92% of the pulse energy remaining within the 29 nm 3 dB spectral bandwidth.

View Article and Find Full Text PDF