Publications by authors named "Michael A Quezada"

Article Synopsis
  • Diffuse hemispheric gliomas, specifically H3G34R/V-mutant, are aggressive brain tumors with no current targeted therapies and come from neural precursor cells.
  • Researchers found that these tumors display developmental patterns similar to healthy brain interneurons and identified key genes that these tumor cells depend on, especially CDK6.
  • Targeting CDK6 with inhibitors showed promising results in reducing tumor growth and improving survival in experimental models, with one patient showing a significant response to treatment.
View Article and Find Full Text PDF
Article Synopsis
  • Genetic alterations in diffuse gliomas, like NFKBIA deletions, help indicate clinical behavior, although some variability persists.
  • NFKBIA haploinsufficiency is linked to worse patient outcomes and distinct genetic patterns, especially at tumor recurrence.
  • The presence of NFKBIA deletions can predict shorter survival in IDH mutant glioma patients, highlighting the need to include this factor in prognostic models.
View Article and Find Full Text PDF

Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation.

View Article and Find Full Text PDF

Unlabelled: Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape.

View Article and Find Full Text PDF

Technologies for detecting cell-cell contacts are powerful tools for studying a wide range of biological processes, from neuronal signaling to cancer-immune interactions within the tumor microenvironment. Here, we report TRACC (Transcriptional Readout Activated by Cell-cell Contacts), a GPCR-based transcriptional recorder of cellular contacts, which converts contact events into stable transgene expression. TRACC is derived from our previous protein-protein interaction recorders, SPARK (Kim et al.

View Article and Find Full Text PDF

Development of effective targeted cancer therapies is fundamentally limited by our molecular understanding of disease pathogenesis. Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy of the childhood pons characterized by a unique substitution to methionine in histone H3 at lysine 27 (H3K27M) that results in globally altered epigenetic marks and oncogenic transcription. Through primary DIPG tumor characterization and isogenic oncohistone expression, we show that the same H3K27M mutation displays distinct modes of oncogenic reprogramming and establishes distinct enhancer architecture depending upon both the variant of histone H3 and the cell context in which the mutation occurs.

View Article and Find Full Text PDF