Publications by authors named "Michael A Pope"

Carbonaceous and carbon-coated electrodes are ubiquitous in electrochemical energy storage and conversion technologies due to their electrochemical stability, lightweight nature, and relatively low cost. However, traditional reliance on conductive additives and binders leads to impermanent electrical pathways. Here, a general approach is presented to fabricate robust electrodes with a progressive failure mechanism by introducing carbide-based interconnects grown via carbothermal conversion of (5 wt%) titanium hydride nanoparticles.

View Article and Find Full Text PDF

Cathodic electrochemical intercalation/exfoliation of transition metal dichalcogenides (TMDs) with bulky tetraalkylammonium-based cations is gaining popularity as it avoids the semiconducting (2H) to metallic (1T) phase transformation in TMDs like molybdenum disulfide (MoS) and, generally, produces sheets with a larger aspect ratio - important for achieving conformal sheet-to-sheet contact in optoelectronic devices. Large single crystals are typically used as the precursor, but these are expensive, often inaccessible, and result in limited quantities of material. In this paper, a 3D-printable electrochemical cell capable of intercalating gram-scale quantities of commercially available TMD powders is presented.

View Article and Find Full Text PDF

Graphene oxide (GO)-based membranes hold significant promise for applications ranging from energy storage to protective coatings, to saline water and produced water treatment, owing to their chemical stability and unique barrier properties achieving a high selectivity for water permeation. However, unmodified GO membranes are not stable when submerged in liquid water, creating challenges with their commercial utilization in aqueous filtration and pervaporation applications. To mitigate this, we develop an approach to modify GO membranes through a combination of low temperature thermal reduction and metal cation crosslinking.

View Article and Find Full Text PDF

Hypothesis: Coating approaches which trap nanoparticles at an interface have become popular for depositing single-layer films from nanoparticle dispersions. Past efforts concluded that concentration and aspect ratio dominate the impact on aggregation state of nanospheres and nanorods at an interface. Although few works have explored the clustering behaviour of atomically thin, two-dimensional materials, we hypothesize that nanosheet concentration is the dominant factor leading to a particular cluster structure and that this local structure impacts the quality of densified Langmuir films.

View Article and Find Full Text PDF

Among the many recently developed photo-catalytic materials, graphitic carbon nitride (g-CN) shows great promise as a catalytic material for water splitting, hydrogen generation, and related catalytic applications. Herein, synthesized bulk g-CNis simply irradiated under a 35 fs pulse at mixed photon energies (800 nm and its second harmonic). g-CNwas synthesized from melamine following a facile thermal polymerization procedure.

View Article and Find Full Text PDF

The use of inexpensive and widely available CO lasers to selectively irradiate polymer films and form a graphene foam, termed laser-induced graphene (LIG), has incited significant research attention. The simple and rapid nature of the approach and the high conductivity and porosity of LIG have motivated its widespread application in electrochemical energy storage devices such as batteries and supercapacitors. However, nearly all high-performance LIG-based supercapacitors reported to date are prepared from costly, petroleum-based polyimide (Kapton, PI).

View Article and Find Full Text PDF

Due to its formidably high theoretical capacity (3590 mAh/g at room temperature), silicon (Si) is expected to replace graphite as the dominant anode for higher energy density lithium (Li)-ion batteries. However, stability issues stemming from silicon's significant volume expansion (∼300%) upon lithiation have slowed down commercialization. Herein, we report the design of a scalable process to engineer core-shell structures capable of buffering this volume expansion, which utilize a core made up of a poly(ethylene oxide)-carboxymethyl cellulose hydrogel and silicon protected by a crumpled graphene shell.

View Article and Find Full Text PDF

Most ionic liquids (ILs) are not surface-active and cannot, alone, be directed to assemble at surfaces─despite their potential as nonvolatile structure-directing agents and use as advanced materials in a multitude of applications. In this work, we investigate aqueous systems of common nonionic surfactants (Triton X-100 and Tween 20), which we use to solubilize 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The resulting solution of mixed micelle leads to spontaneous adsorption of the IL/surfactant complex onto graphene oxide (GO) surfaces, forming a compact film.

View Article and Find Full Text PDF

Adhesion between similar and dissimilar materials is essential to many biological systems and synthetic materials, devices, and machines. Since the inception of adhesion science more than five decades ago, adhesion to a surface has long been recognized as beyond two-dimensional. Similarly, molecular conformation - the three-dimensional arrangement of atoms in a molecule - is ubiquitous in biology and fundamental to the binding of biomolecules.

View Article and Find Full Text PDF

Oil and gas industries produce a huge amount of wastewater known as produced water which contains diverse contaminants including salts, dissolved organics, dispersed oils, and solids making separation and purification challenging. The chemical and thermal stability of graphene oxide (GO) membranes make them promising for use in membrane pervaporation, which may provide a more economical route to purifying this water for disposal or re-use compared to other membrane-based separation techniques. In this study, we investigate the performance and stability of GO membranes cast onto polyethersulfone (PES) supports in the separation of simulated produced water containing high salinity brackish water (30 g/L NaCl) contaminated with phenol, cresol, naphthenic acid, and an oil-in-water emulsion.

View Article and Find Full Text PDF

Sulfur cathodes for lithium-sulfur batteries often rely on integrating sulfur with high surface area carbonaceous materials. Nanoscale mixing is typically achieved by a lengthy, high-temperature melt imbibition approach that employs carbon nanomaterials in an aggregated solid form. In this work, we present a simple strategy to coat carbon nanomaterials with sulfur in a cost-effective, room-temperature process using inexpensive elemental sulfur.

View Article and Find Full Text PDF

Despite silicon being a promising candidate for next-generation lithium-ion battery anodes, self-pulverization and the formation of an unstable solid electrolyte interface, caused by the large volume expansion during lithiation/delithiation, have slowed its commercialization. In this work, we expand on a controllable approach to wrap silicon nanoparticles in a crumpled graphene shell by sealing this shell with a polydopamine-based coating. This provides improved structural stability to buffer the volume change of Si, as demonstrated by a remarkable cycle life, with anodes exhibiting a capacity of 1038 mA h/g after 200 cycles at 1 A/g.

View Article and Find Full Text PDF

Silicon anodes have a theoretical capacity of 3590 mAh g (for Li Si , at room temperature), which is tenfold higher than the graphite anodes used in current Li-ion batteries. This, and silicon's natural abundance, makes it one of the most promising materials for next-generation batteries. Encapsulating silicon nanoparticles (Si NPs) in a crumpled graphene shell by spray drying or spray pyrolysis are promising and scalable methods to produce core-shell structures, which buffer the extreme volume change (>300 vol %) caused by (de)lithiaton of silicon.

View Article and Find Full Text PDF

A rapid microwave hydrothermal process is adopted for the synthesis of titanium dioxide and reduced graphene oxide nanocomposites as high-performance anode materials for Li-ion batteries. With the assistance of hydrazine hydrate as a reducing agent, graphene oxide was reduced while TiO nanoparticles were grown on the nanosheets to obtain the nanocomposite material. The morphology of the nanocomposite obtained consisted of TiO particles with a size of ∼100 nm, uniformly distributed on the reduced graphene oxide nanosheets.

View Article and Find Full Text PDF

The metallic, 1T polymorph of molybdenum disulfide (MoS) is promising for next-generation supercapacitors due to its high theoretical surface area and density which lead to high volumetric capacitance. Despite this, there are few fundamental works examining the double-layer charging mechanisms at the MoS/electrolyte interface. This study examines the potential-dependent and frequency-dependent area-specific double-layer capacitance () of the 1T and 2H polymorphs of MoS in aqueous and organic electrolytes.

View Article and Find Full Text PDF

Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors.

View Article and Find Full Text PDF

The Langmuir-Blodgett technique is one of the most controlled methods to deposit monomolecular layers of floating or surface active materials but has lacked the ability to coat truly large-area substrates. In this work, by manipulating single-layer dispersions of graphene oxide (GO) and thermally exfoliated GO into water-immiscible spreading solvents, unlike traditional Langmuir-Blodgett deposition which requires densification achieved by compressing barriers, we demonstrate the ability to control the 2D aggregation and densification behavior of these floating materials using a barrier-free method. This is done by controlling the edge-to-edge interactions through modified subphase conditions and by utilizing the distance-dependent spreading pressure of the deposition solvent.

View Article and Find Full Text PDF

A major stumbling block in the development of high energy density graphene-based supercapacitors has been maintaining high ion-accessible surface area combined with high electrode density. Herein, we develop an ionic liquid (IL)-surfactant microemulsion system that is found to facilitate the spontaneous adsorption of IL-filled micelles onto graphene oxide (GO). This adsorption distributes the IL over all available surface area and provides an aqueous formulation that can be slurry cast onto current collectors, leaving behind a dense nanocomposite film of GO/IL/surfactant.

View Article and Find Full Text PDF

We demonstrate that functionalized graphene, rich with lattice defects but lean with oxygen sites, catalyzes the reduction of Co(III)(bpy)3 as well as platinum does, exhibiting a rate of heterogeneous electron transfer, k0, of ∼6 × 10(-3) cm/s. We show this rate to be an order of magnitude higher than on oxygen-site-rich graphene oxide, and over 2 orders of magnitude higher than on the basal plane of graphite (as a surrogate for pristine graphene). Furthermore, dye-sensitized solar cells using defect-rich graphene monolayers perform similarly to those using platinum nanoparticles as the catalyst.

View Article and Find Full Text PDF

We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e.

View Article and Find Full Text PDF

The intrinsic electrocatalytic properties of functionalized graphene sheets (FGSs) in nitric oxide (NO) sensing are determined by cyclic voltammetry with FGS monolayer electrodes. The degrees of reduction and defectiveness of the FGSs are varied by employing different heat treatments during their fabrication. FGSs with intermediate degrees of reduction and high Raman ID to IG peak ratios exhibit an NO oxidation peak potential of 794 mV (vs 1 M Ag/AgCl), closely matching values obtained with a platinized Pt control (791 mV) as well as recent results from the literature on porous or biofunctionalized electrodes.

View Article and Find Full Text PDF

Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated with limited success. Here, we demonstrate a ternary self-assembly approach using graphene as fundamental building blocks to construct ordered metal oxide-graphene nanocomposites.

View Article and Find Full Text PDF