Publications by authors named "Michael A Peshkin"

Article Synopsis
  • The ability to create realistic texture perception through haptic devices has been a challenge, mainly focusing on how we perceive roughness via skin mechanoreceptors.
  • Existing models for predicting texture perception are limited to normal stimuli and do not account for important factors like lateral shear forces or dispersed actuator configurations that can enhance the perception of roughness.
  • A new predictive model developed in this study successfully forecasts perceived roughness based on various external stimuli and has been validated with experimental results, highlighting the importance of strain variation and lateral shear forces for accurate texture sensation.
View Article and Find Full Text PDF

As the number of applications for tactile feedback technology rapidly increases, so too does the need for efficient, flexible, and extensible representations of virtual textures. The previously introduced Single-Pitch Texel rendering algorithm offers designers the ability to produce textures with perceptually wide-band spectral characteristics while requiring very few input parameters. This paper expands on the capabilities of the rendering algorithm.

View Article and Find Full Text PDF

We present PixeLite, a novel haptic device that produces distributed lateral forces on the fingerpad. PixeLite is 0.15 mm thick, weighs 1.

View Article and Find Full Text PDF

This paper introduces a novel rendering algorithm for virtual textures, specifically those with characteristic length scales below 1 mm. By leveraging the relatively lossy mode of human tactile perception at this length scale, a virtual texture with wide-band spectral characteristics can be reduced to a spatial sequence of single-frequency texels, where each frequency is pulled stochastically from a distribution. A psychophysical study was conducted to demonstrate that, below a limiting physical texel length, virtual textures defined by identical frequency distributions are perceptually indiscriminable.

View Article and Find Full Text PDF

Friction modulation technology enables the creation of textural effects on flat haptic displays. However, an intuitive and manageably small design space for construction of such haptic textures remains an unfulfilled goal for user interface designers. In this paper, we explore perceptually relevant features of fine texture for use in texture construction and modification.

View Article and Find Full Text PDF

This article seeks to understand conditions under which virtual gratings produced via vibrotaction and friction modulation are perceived as similar and to find physical origins in the results. To accomplish this, we developed two single-axis devices, one based on electroadhesion and one based on out-of-plane vibration. The two devices had identical touch surfaces, and the vibrotactile device used a novel closed-loop controller to achieve precise control of out-of-plane plate displacement under varying load conditions across a wide ranget of frequencies.

View Article and Find Full Text PDF

One well-known class of surface haptic devices that we have called Tactile Pattern Displays (TPaDs) uses ultrasonic transverse vibrations of a touch surface to modulate fingertip friction. This article addresses the power consumption of glass TPaDs, which is an important consideration in the context of mobile touchscreens. In particular, based on existing ultrasonic friction reduction models, we consider how the mechanical properties (density and Young's modulus) and thickness of commonly-used glass formulations affect TPaD performance, namely the relation between its friction reduction ability and its real power consumption.

View Article and Find Full Text PDF

In this article, we have developed a novel button click rendering mechanism based on active lateral force feedback. The effect can be localized because electroadhesion between a finger and a surface can be localized. Psychophysical experiments were conducted to evaluate the quality of a rendered button click, which subjects judged to be acceptable.

View Article and Find Full Text PDF

We propose a new lateral force feedback device, the UltraShiver, which employs a combination of in-plane ultrasonic oscillation (around 30 kHz) and out-of-plane electroadhesion. It can achieve a strong active lateral force (400 mN) on the bare fingertip while operating silently. The lateral force is a function of pressing force, lateral vibration velocity, and electroadhesive voltage, as well as the relative phase between the velocity and voltage.

View Article and Find Full Text PDF

The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump.

View Article and Find Full Text PDF

When multiple fingertips experience force sensations, how does the brain interpret the combined sensation? In particular, under what conditions are the sensations perceived as separate or, alternatively, as an integrated whole? In this work, we used a custom force-feedback device to display force signals to two fingertips (index finger and thumb) as they traveled along collinear paths. Each finger experienced a pattern of forces that, taken individually, produced illusory virtual bumps, and subjects reported whether they felt zero, one, or two bumps. We varied the spatial separation between these bump-like force-feedback regions, from being much greater than the finger span to nearly exactly the finger span.

View Article and Find Full Text PDF

Haptic interfaces controlled by a single fingertip or hand-held probe tend to display surface features individually, requiring serial search for multiple features. Novel surface haptic devices, however, have the potential to provide displays to multiple fingertips simultaneously, affording the possibility of parallel search. Using variable-friction surface haptic devices, we investigated the ability of participants to detect a target feature among a set of distractors in parallel across the fingers.

View Article and Find Full Text PDF

The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment.

View Article and Find Full Text PDF

A new method of lower-limb exoskeleton control aimed at improving the agility of leg-swing motion is presented. In the absence of control, an exoskeleton's mechanism usually hinders agility by adding mechanical impedance to the legs. The uncompensated inertia of the exoskeleton will reduce the natural frequency of leg swing, probably leading to lower step frequency during walking as well as increased metabolic energy consumption.

View Article and Find Full Text PDF

In order to provide natural, biomimetic control to recently developed powered ankle prostheses, we must characterize the impedance of the ankle during ambulation tasks. To this end, a platform robot was developed that can apply an angular perturbation to the ankle during ambulation and simultaneously acquire ground reaction force data. In this study, we detail the design of the platform robot and characterize the impedance of the ankle during quiet standing.

View Article and Find Full Text PDF

Existing prosthetic limbs do not provide amputees with cutaneous feedback. Tactile feedback is essential to intuitive control of a prosthetic limb and it is now clear that the sense of body self-identification is also linked to cutaneous touch. Here we have created an artificial sense of touch for a prosthetic limb by coupling a pressure sensor on the hand through a robotic stimulator to surgically redirected cutaneous sensory nerves (targeted reinnervation) that once served the lost limb.

View Article and Find Full Text PDF

The lack of proprioceptive feedback is a serious deficiency of current prosthetic control systems. The Osseo-Magnetic Link (OML) is a novel humeral or wrist rotation control system that could preserve proprioception. It utilizes a magnet implanted within the residual bone and sensors mounted in the prosthetic socket to detect magnetic field vectors and determine the bone's orientation.

View Article and Find Full Text PDF

Background And Purpose: Stiff-knee gait is defined as reduced knee flexion during the swing phase. It is accompanied by frontal plane compensatory movements (eg, circumduction and hip hiking) typically thought to result from reduced toe clearance. As such, we examined if knee flexion assistance before foot-off would reduce exaggerated frontal plane movements in people with stiff-knee gait after stroke.

View Article and Find Full Text PDF

Many of those who survive a stroke develop a gait disability known as stiff-knee gait (SKG). Characterized by reduced knee flexion angle during swing, people with SKG walk with poor energy efficiency and asymmetry due to the compensatory mechanisms required to clear the foot. Previous modeling studies have shown that knee flexion activity directly before the foot leaves the ground, and this should result in improved knee flexion angle during swing.

View Article and Find Full Text PDF

We envision cobotic infinitely-variable transmissions (IVTs) as an enabling technology for haptics and prosthetics that will allow for increases in the dynamic range of these devices while simultaneously permitting reductions in actuator size and power requirements. Use of cobotic IVTs eliminates the need to make compromises on output flow and effort, which are inherent to choosing a fixed transmission ratio drivetrain. The result is a mechanism with enhanced dynamic range that extends continuously from a completely clutched state to a highly backdrivable state.

View Article and Find Full Text PDF

Recent work in human-robot interaction has revealed the need for compliant, human-friendly devices. One such device, known as the MARIONET, is a cable-driven single joint actuator with the intended applications of physical rehabilitation and assistive devices. In this work, the stability of the nonlinear system is determined in regards to its equilibria in a wide variety of configurations.

View Article and Find Full Text PDF

Smooth, frictionless, kinematic constraints on the motion of a grasped object reduce the motion freedoms at the hand, but add force freedoms, that is, force directions that do not affect the motion of the object. We are studying how subjects make use of these force freedoms in static and dynamic manipulation tasks. In this study, subjects were asked to use their right hand to hold stationary a manipulandum being pulled with constant force along a low-friction linear rail.

View Article and Find Full Text PDF