Intracarotid arterial hyperosmolar mannitol (ICAHM) blood-brain barrier disruption (BBBD) is effective and safe for delivery of therapeutics for central nervous system malignancies. ICAHM osmotically alters endothelial cells and tight junction integrity to achieve BBBD. However, occurrence of neuroinflammation following hemispheric BBBD by ICAHM remains unknown.
View Article and Find Full Text PDFBackground/aim: Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells.
View Article and Find Full Text PDFWe tested the hypothesis that intra-arterial (IA) infusion of temozolomide into the internal carotid artery would safely improve drug delivery to brain and enhance chemotherapy efficacy in a chemosensitive rat brain tumor model. Quantitative autoradiography after 25 µCi (14)C-temozolomide was given by oral, intravenous, or IA route of administration, or IA with osmotic blood-brain barrier disruption (BBBD) (n = 5-7 per group) showed that both IA and IA/BBBD administration increased drug delivery in tumor by over threefold compared to normal brain (P < 0.02), and also significantly elevated delivery throughout the infused right hemisphere.
View Article and Find Full Text PDFBackground: Blockade of vascular endothelial growth factor (VEGF) to promote vascular normalization and inhibit angiogenesis has been proposed for the treatment of brain metastases; however, vascular normalization has not been well-characterized in this disease. We investigated the effect of treatment with bevacizumab anti-VEGF antibody on magnetic resonance imaging (MRI) biomarkers of brain tumor vascular characteristics in comparison to small molecule delivery in a rat model of human lung cancer brain metastasis.
Methods: Athymic rats with A549 human lung adenocarcinoma intracerebral xenografts underwent MRI at 11.
Decreasing oxidative damage with the antioxidant agent N-acetylcysteine (NAC) can block the side effects of chemotherapy, but may diminish anti-tumor efficacy. We tested the potential for interactions of high dose NAC against a minimally effective cisplatin chemotherapy regimen in rat models of human pediatric cancers. Athymic rats received subcutaneous implantation of human SK-N-AS neuroblastoma cells or intra-cerebellar implantation of human D283-MED medulloblastoma cells.
View Article and Find Full Text PDFPurpose: To evaluate the effect of rituximab monoclonal antibody (mAb) on MRI tumor volumetrics and efficacy in a rat model of central nervous system (CNS) lymphoma when delivery to the brain was optimized with osmotic blood-brain barrier disruption (BBBD).
Experimental Design: Female nude rats with intracerebral MC116 human B-cell lymphoma xenografts underwent baseline MRI and were randomized into 5 groups (n = 6 per group): (i) BBBD saline control; (ii) methotrexate with BBBD; (iii) rituximab with BBBD; (iv) rituximab and methotrexate with BBBD; and (v) intravenous rituximab. Tumor volumes were assessed by MRI at 1 week, and rats were followed for survival.
Background/aims: Acetaminophen overdose causes hepatotoxicity mediated by toxic metabolites generated through the cytochrome P450 enzyme. The objective of this study was to investigate whether acetaminophen (AAP) can enhance cisplatin (CDDP) cytotoxicity against human hepatocarcinoma and hepatoblastoma cells in vitro and whether this effect can be prevented by N-acetylcysteine (NAC).
Methods: In vitro studies (glutathione [GSH] level, cell viability, and immunoblot assays) were performed using human hepatocarcinoma and hepatoblastoma cells cultured in AAP, CDDP, and the combination of both with or without delayed NAC administration.
Thiol chemoprotective agents can reduce chemotherapy side effects, but clinical use is limited due to concerns of impaired chemotherapeutic efficacy. We evaluated whether an optimized bone marrow chemoprotection regimen impaired the efficacy of enhanced chemotherapy against rat brain tumors. Nude rats with intracerebral human lung carcinoma xenografts were treated with carboplatin, melphalan, and etoposide phosphate delivered intra-arterially with osmotic blood-brain barrier disruption (n = 8/group).
View Article and Find Full Text PDF