Publications by authors named "Michael A Nordstrom"

The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.

View Article and Find Full Text PDF

Objective: All previous studies using TMS to assess short-interval intracortical inhibition (SICI) in older adults have used a conventional coil orientation, which produces posterior-to-anterior (PA) current flow in the motor cortex. However, no studies have examined SICI in older adults by reversing the coil to induce anterior-to-posterior (AP) current flow, which is considered more sensitive at detecting SICI. Therefore, we investigated age-related changes in SICI using both PA and AP TMS across different conditioning stimulus intensities and muscle activation states.

View Article and Find Full Text PDF

Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training.

View Article and Find Full Text PDF

Motor units within human muscles usually exhibit a significant degree of short-term synchronization. Such coincident spiking typically has been attributed to last-order projections that provide common synaptic input across motor neurons. The extent of branched input arising directly from cortical neurons has often been suggested as a critical factor determining the magnitude of short-term synchrony.

View Article and Find Full Text PDF

The purpose of this study was to examine changes in motor unit activity in the biceps brachii muscle after an initial (Bout 1) and repeated (Bout 2) session of eccentric exercise separated by 1 wk. Eight subjects (aged 22 ± 2 yr) participated in experimental assessments of neuromuscular function obtained before, immediately after, 24 h after, and 7 days after each exercise bout. Each experimental session involved assessments of elbow-flexor force and biceps and triceps brachii electromyography during maximum voluntary isometric contractions (MVCs) and constant-force isometric contractions at five contraction intensities (5-50% MVC), along with indicators of muscle damage (muscle pain and passive tension).

View Article and Find Full Text PDF

This study examined changes in corticomotor excitability and plasticity after a thumb abduction training task in young and old adults. Electromyographic (EMG) recordings were obtained from right abductor pollicis brevis (APB, target muscle) and abductor digiti minimi (ADM, control muscle) in 14 young (18-24 yr) and 14 old (61-82 yr) adults. The training task consisted of 300 ballistic abductions of the right thumb to maximize peak thumb abduction acceleration (TAAcc).

View Article and Find Full Text PDF

Like most of the cranial muscles involved in speech, the trigeminally innervated anterior digastric muscles are controlled by descending corticobulbar projections from the primary motor cortex (M1) of each hemisphere. We hypothesized that changes in corticobulbar M1 excitability during speech production would show a hemispheric asymmetry favoring the left side, which is the dominant hemisphere for language processing in most strongly right handed subjects. Fifteen volunteers aged 24.

View Article and Find Full Text PDF

The purpose of this study was to determine the effect of eccentric muscle damage on recruitment threshold force and repetitive discharge properties of low-threshold motor units. Ten subjects performed four tasks involving isometric contraction of elbow flexors while electromyographic (EMG) data were recorded from human biceps brachii and brachialis muscles. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; 3) motor unit recruitment threshold task; and 4) minimum motor unit discharge rate task.

View Article and Find Full Text PDF

The authors sought to determine whether repeated practice of a skilled motor task reduced the tremor arising from pulsatile control that occurs during and after training. Participants flexed and extended their index finger at the metacarpophalangeal joint to track a screen cursor during skill training, in 6 training runs, each of 3-min duration. Nonskill training comprised voluntary flexion and extension movements.

View Article and Find Full Text PDF

We investigated whether plasticity of human motor cortex (M1) is influenced by time of day, and whether changes in circulating levels of cortisol contribute to this effect. Neuroplasticity was induced using paired associative stimulation (PAS), involving electrical stimulation of left median nerve, paired with transcranial magnetic stimulation over the right M1 25 ms later (90 pairs at 0.05 Hz).

View Article and Find Full Text PDF

Objective: To evaluate the time-course of changes in masseter motoneuron pool excitability following transcranial magnetic stimulation of motor cortex, and relate this to the duration of the masseter cortical silent period (CSP).

Methods: Surface EMG was recorded bilaterally from masseter and digastric muscles in 13 subjects. Focal TMS was applied at 1.

View Article and Find Full Text PDF

The purpose of this study was to determine the effect of eccentric exercise on correlated motor unit discharge (motor unit synchronization and coherence) during low-force contractions of the human biceps brachii muscle. Eight subjects (age, 25 +/- 7 yr) performed three tasks involving isometric contraction of elbow flexors while EMG (surface and intramuscular) records were obtained from biceps brachii. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; and 3) sustained discharge of pairs of concurrently active motor units for 2-5 min.

View Article and Find Full Text PDF

Objective: To determine whether a single hemisphere exerts distinct inhibitory influences over masseter muscles on each side, and to compare features of the masseter cortical silent period (CSP) evoked by transcranial magnetic stimulation (TMS) with previous reports from limb and other cranial muscles.

Methods: Focal TMS was applied over the motor cortex jaw area in 14 normal subjects. In one experiment, TMS intensity was constant (1.

View Article and Find Full Text PDF

Objective: To investigate the presence and features of short-interval intracortical inhibition (SICI) in the human trigeminal motor system.

Methods: Surface electromyogram (EMG) was recorded from left and right digastric muscles in 7 subjects, along with additional experiments with intramuscular EMG in 2 subjects. Focal transcranial magnetic stimulation (TMS) was used to activate the motor cortex of one hemisphere and elicit motor evoked potentials (MEPs) in digastric muscles on each side, at rest and while subjects activated the muscles at 10% maximal EMG.

View Article and Find Full Text PDF

Several paired-associative stimulation (PAS) protocols induce neuroplastic changes in human motor cortex (M1). To understand better the inherent variability of responses to PAS, we investigated the effectiveness and reproducibility of two PAS paradigms, and neurophysiological and experimental variables that may influence this. Motor evoked potentials (MEPs) were elicited by transcranial magnetic stimulation (TMS) of right M1, and recorded from surface EMG of left abductor pollicis brevis (APB) and first dorsal interosseous before and after PAS.

View Article and Find Full Text PDF

To help reduce the gap between the cellular physiology of motoneurons (MNs) as studied "bottom-up" in animal preparations and the "top-down" study of the firing patterns of human motor units (MUs), this article addresses the question of whether motoneuron adaptation contributes to muscle fatigue. Findings are reviewed on the intracellularly recorded electrophysiology of spinal MNs as studied in vivo and in vitro using animal preparations, and the extracellularly recorded discharge of MUs as studied in conscious humans. The latter "top-down" approach, combined with kinetic measurements, has provided most of what is currently known about the neurobiology of muscle fatigue, including its task and context dependencies.

View Article and Find Full Text PDF

In this brief review I describe details of the functional organisation of the bilateral corticobulbar projections to the trigeminally innervated masticatory muscles, as revealed by transcranial magnetic stimulation of the human brain. The motor cortices of both hemispheres are involved in control of trigeminal motoneurons, however the contralateral hemisphere has the greater excitatory influence. Corticomotoneuronal cells in each hemisphere project to jaw-closer and jaw-opener motoneurons.

View Article and Find Full Text PDF

GABAergic intracortical inhibition (ICI) in human motor cortex (M1) assists fractionated activation of muscles, and it has been suggested that hemispheric differences in ICI may contribute to hand preference. Previous studies of this issue have all been conducted at rest, with conflicting results. Testing during voluntary activation may reveal functionally relevant differences.

View Article and Find Full Text PDF

Objective: To determine the pattern of organization of common inputs to the motoneuron pools of individual muscles in the masticatory system.

Methods: Six subjects bit on a rubber-coated wooden splint placed between the upper and lower incisor teeth. We recorded the surface electromyogram (EMG) of co-contracting masseter, temporalis and digastric muscles bilaterally during isometric jaw closing at 5%, 10%, 20% and 40% of maximal voluntary masseter EMG.

View Article and Find Full Text PDF

Motor-evoked potentials (MEPs) after transcranial magnetic stimulation (TMS) show a trial-to-trial variation in size at rest that is positively correlated for muscles of the same, and opposite, upper limbs. To investigate the mechanisms responsible for this we have examined the effect of voluntary activation on the correlated fluctuations of MEP size. In 8 subjects TMS was concurrently applied to the motor cortex of each hemisphere using 2 figure-8 coils.

View Article and Find Full Text PDF

The purpose of the study was to quantify the strength of motor-unit coherence from the left and right first dorsal interosseous muscles in untrained, skill-trained (musicians), and strength-trained (weightlifters) individuals who had long-term specialized use of their hand muscles. The strength of motor-unit coherence was quantified from a total of 394 motor-unit pairs in 13 subjects using data from a previous study in which differences were found in the strength of motor-unit synchronization depending on training status. In the present study, we found that the strength of motor-unit coherence was significantly greater in the left compared with the right hand of untrained right-handed subjects with the largest differences observed between 21 and 24 Hz.

View Article and Find Full Text PDF

The ability to independently move the digits is limited by peripheral as well as central factors. A central limitation to independent finger movements might arise from the inability of the human nervous system to activate motor units (MUs) that exert force on one finger without also activating MUs that exert force on adjacent fingers. Short-term synchronization between MU pairs is thought to be the result of the two motoneurons receiving common input from last-order neuronal projections.

View Article and Find Full Text PDF

Mandibular movements and masseter muscle activity were measured in humans during hopping, walking and running to determine whether reflexes contribute to the maintenance of jaw position during locomotion. In initial experiments, subjects hopped so that they landed either on their toes or on their heel. Landing on the toes provoked only small mandibular movements and no reflex responses in the masseter electromyogram (EMG).

View Article and Find Full Text PDF

Motor performance induces a postexercise increase in corticomotor excitability that may be associated with motor learning. We investigated whether there are hemispheric differences in the extent and/or time course of changes in corticomotor excitability following a manipulation task (Purdue pegboard) and their relationship with motor performance. Single- and paired-pulse (3 ms) transcranial magnetic stimulation (TMS) was used to assess task-induced facilitation of the muscle evoked potential (MEP) and intracortical inhibition (ICI) for three intrinsic hand muscles acting on digits 1, 2, and 5.

View Article and Find Full Text PDF

Paired-pulse transcranial magnetic stimulation (TMS) was used to assess the effectiveness of intracortical inhibition (ICI) acting on corticospinal neurons controlling three intrinsic hand muscles in humans. We hypothesised that the suppression of ICI with selective activation of a muscle would be restricted to corticospinal neurons controlling the muscle targeted for activation. Surface EMG was recorded from abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles of the left hand.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Michael A Nordstrom"

  • - Michael A Nordstrom's research primarily focuses on motor control, neuroplasticity, and the effects of various stimulation techniques, particularly transcranial magnetic stimulation (TMS), on motor abilities and muscle activity.
  • - His studies reveal significant age-related differences in intracortical inhibition and motor plasticity, demonstrating that older adults exhibit reduced sensitivity and responses to TMS, impacting motor function improvements following training.
  • - Additionally, Nordstrom explores how external factors like stimulation frequency and physiological conditions, such as cortisol levels, modulate neural excitability and performance outcomes, emphasizing the importance of these variables in motor learning and rehabilitation strategies.