J Biomed Mater Res A
January 2018
Collagen has received considerable attention as a biomaterial for tissue engineering because of its low immunogenicity, controllable biodegradation, and ability to influence cell growth and proliferation. Frequently, collagen scaffolds require crosslinking to improve mechanical strength, requiring agents like glutaraldehyde that have high residual cytotoxicity. A novel method for extracting residual glutaraldehyde from crosslinked collagen films with supercritical carbon dioxide (CO ) is presented.
View Article and Find Full Text PDFBacterial endotoxins have strong affinity for metallic biomaterials because of surface energy effects. Conventional depyrogenation methods may not eradicate endotoxins and may compromise biological properties and functionality of metallic instruments and implants. We evaluated the solubilization and removal of E.
View Article and Find Full Text PDFIt is known that the commercial surfactant Dehypon® Ls-54 is soluble in supercritical CO(2) and that it enables formation of water-in-CO(2) microemulsions. In this work we observed phase equilibrium for the Ls-54/CO(2) and Ls-54/water/CO(2) systems in the liquid CO(2) region, from 278.15 - 298.
View Article and Find Full Text PDFThe present work examines chemical and structural response in B. anthracis spores killed by a mixture of supercritical carbon dioxide (SCCO(2)) and hydrogen peroxide (H(2)O(2)). Deactivation of 6-log of B.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2007
It was hypothesized that supercritical carbon dioxide (SC-CO(2)) treatment could serve as an alternative sterilization method at various temperatures (40-105 degrees C), CO(2) pressures (200-680 atm), and treatment times (25 min to 6 h), and with or without the use of a passive additive (distilled water, dH(2)O) or an active additive (hydrogen peroxide, H(2)O(2)). While previous researchers have shown that SC-CO(2) possesses antimicrobial properties, sterilization effectiveness has not been shown at sufficiently low treatment temperatures and cycle times, using resistant bacterial spores. Experiments were conducted using Geobacillus stearothermophilus and Bacillus atrophaeus spores.
View Article and Find Full Text PDFJ Microbiol Methods
September 2006
Supercritical carbon dioxide (SC CO(2)) has been evaluated as a new sterilization technology. Results are presented on killing of B. pumilus spores using SC CO(2) containing trace levels of additives.
View Article and Find Full Text PDF