Publications by authors named "Michael A Jindra"

Creating controlled lipid unsaturation locations in oleochemicals can be a key to many bioengineered products. However, evaluating the effects of modifications to the acyl-ACP desaturase on lipid unsaturation is not currently amenable to high-throughput assays, limiting the scale of redesign efforts to <200 variants. Here, we report a rapid MS assay for profiling the positions of double bonds on membrane lipids produced by Escherichia coli colonies after treatment with ozone gas.

View Article and Find Full Text PDF

The dominant strategy for tailoring the chain-length distribution of free fatty acids (FFA) synthesized by heterologous hosts is expression of a selective acyl-acyl carrier protein (ACP) thioesterase. However, few of these enzymes can generate a precise (greater than 90% of a desired chain-length) product distribution when expressed in a microbial or plant host. The presence of alternative chain-lengths can complicate purification in situations where blends of fatty acids are not desired.

View Article and Find Full Text PDF

Microbial lipid metabolism is an attractive route for producing oleochemicals. The predominant strategy centers on heterologous thioesterases to synthesize desired chain-length fatty acids. To convert acids to oleochemicals (e.

View Article and Find Full Text PDF

1-octanol is a valuable molecule in the chemical industry, where it is used as a plasticizer, as a precursor in the production of linear low-density polyethylene (LLDPE), and as a growth inhibitor of tobacco plant suckers. Due to the low availability of eight-carbon acyl chains in natural lipid feedstocks and the selectivity challenges in petrochemical routes to medium-chain fatty alcohols,1-octanol sells for the highest price among the fatty alcohol products. As an alternative, metabolic engineers have pursued sustainable 1-octanol production via engineered microbes.

View Article and Find Full Text PDF

Medium-chain length methyl ketones are potential blending fuels due to their cetane numbers and low melting temperatures. Biomanufacturing offers the potential to produce these molecules from renewable resources such as lignocellulosic biomass. In this work, we designed and tested metabolic pathways in Escherichia coli to specifically produce 2-heptanone, 2-nonanone and 2-undecanone.

View Article and Find Full Text PDF