Publications by authors named "Michael A Galella"

Formyl peptide receptor 2 (FPR2) agonists have shown efficacy in inflammatory-driven animal disease models and have the potential to treat a range of diseases. Many reported synthetic agonists contain a phenylurea, which appears to be necessary for activity in the reported chemotypes. We set out to find isosteres for the phenylurea and focused our efforts on heteroaryl rings.

View Article and Find Full Text PDF

Factor XIa (FXIa) is an enzyme in the coagulation cascade thought to amplify thrombin generation but has a limited role in hemostasis. From preclinical models and human genetics, an inhibitor of FXIa has the potential to be an antithrombotic agent with superior efficacy and safety. Reversible and irreversible inhibitors of FXIa have demonstrated excellent antithrombotic efficacy without increased bleeding time in animal models (Weitz, J.

View Article and Find Full Text PDF

Heart failure (HF) treatment remains a critical unmet medical need. Studies in normal healthy volunteers and HF patients have shown that [Pyr]apelin-13, the endogenous ligand for the APJ receptor, improves cardiac function. However, the short half-life of [Pyr]apelin-13 and the need for intravenous administration have limited the therapeutic potential for chronic use.

View Article and Find Full Text PDF

BMS-813160 is a pharmaceutical entity currently in development at Bristol Myers Squibb. Its defining structural feature is a unique chiral all triamino cyclohexane core. Medicinal and process chemistry groups at BMS have previously published synthesis strategies for chemotypes similar to the target molecule, but a streamlined approach amenable for longer-term supply was necessary.

View Article and Find Full Text PDF

Apelin-13 is an endogenous peptidic agonist of the apelin receptor (APJ) receptor with the potential for improving cardiac function in heart failure patients. However, the low plasma stability of apelin-13 necessitates continuous intravenous infusion for therapeutic use. There are several approaches to increase the stability of apelin-13 including attachment of pharmacokinetic enhancing groups, stabilized peptides, and Fc-fusion approaches.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) has been shown to play a key role in the pathogenesis of autoimmunity. Therefore, the inhibition of the kinase activity of BTK with a small molecule inhibitor could offer a breakthrough in the clinical treatment of many autoimmune diseases. This Letter describes the discovery of BMS-986143 through systematic structure-activity relationship (SAR) development.

View Article and Find Full Text PDF

A novel series of cis-3,4-diphenylpyrrolidines were designed as RORγt inverse agonists based on the binding conformation of previously reported bicyclic sulfonamide 1. Preliminary synthesis and structure-activity relationship (SAR) study established (3S,4S)-3-methyl-3-(4-fluorophenyl)-4-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenyl)pyrrolidine as the most effective scaffold. Subsequent SAR optimization led to identification of a piperidinyl carboxamide 31, which was potent against RORγt (EC of 61 nM in an inverse agonist assay), selective relative to RORα, RORβ, LXRα and LXRβ, and stable in human and mouse liver microsomes.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase, is a member of the Tec family of kinases and is essential for B cell receptor (BCR) mediated signaling. BTK also plays a critical role in the downstream signaling pathways for the Fcγ receptor in monocytes, the Fcε receptor in granulocytes, and the RANK receptor in osteoclasts. As a result, pharmacological inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as rheumatoid arthritis and lupus.

View Article and Find Full Text PDF

A new phenyl (3-phenylpyrrolidin-3-yl)sulfone series of RORγt inverse agonists was discovered utilizing the binding conformation of previously reported bicyclic sulfonamide . Through a combination of structure-based design and structure-activity relationship studies, a polar set of amides at 1-position of the pyrrolidine ring and perfluoroisopropyl group at -position of the 3-phenyl group were identified as critical structural elements to achieve high selectivity against PXR, LXRα, and LXRβ. Further optimization led to the discovery of (1,4r)-4-(()-3-((4-fluorophenyl)sulfonyl)-3-(4-(perfluoropropan-2-yl)phenyl)pyrrolidine-1-carbonyl)cyclohexane-1-carboxylic acid (), which displayed excellent selectivity, desirable liability and pharmacokinetic properties , and a good pharmacokinetic profile in mouse.

View Article and Find Full Text PDF

We disclose the optimization of a high throughput screening hit to yield benzothiazine and tetrahydroquinoline sulfonamides as potent RORγt inverse agonists. However, a majority of these compounds showed potent activity against pregnane X receptor (PXR) and modest activity against liver X receptor α (LXRα). Structure-based drug design (SBDD) led to the identification of benzothiazine and tetrahydroquinoline sulfonamide analogs which completely dialed out LXRα activity and were less potent at PXR.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a member of the Tec family of kinases. BTK plays an essential role in B cell receptor (BCR)-mediated signaling as well as Fcγ receptor signaling in monocytes and Fcε receptor signaling in mast cells and basophils, all of which have been implicated in the pathophysiology of autoimmune disease. As a result, inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as lupus and rheumatoid arthritis.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates a multitude of physiological processes such as lymphocyte trafficking, cardiac function, vascular development, and inflammation. Because of the ability of S1P1 receptor agonists to suppress lymphocyte egress, they have great potential as therapeutic agents in a variety of autoimmune diseases. In this article, the discovery of selective, direct acting S1P1 agonists utilizing an ethanolamine scaffold containing a terminal carboxylic acid is described.

View Article and Find Full Text PDF

A novel cyclohexenyl series of CCR2 antagonists has been discovered. This series of small, rigid compounds exhibits submicromolar binding affinity for CCR2. Modification of the substituents on the cyclohexene ring led to the identification of potent CCR2 antagonists.

View Article and Find Full Text PDF

An empirical approach to improve the microsomal stability and CYP inhibition profile of lead compounds 1a and 1b led to the identification of 5 (BMS-341) as a dissociated glucocorticoid receptor modulator. Compound 5 showed significant improvements in pharmacokinetic properties and, unlike compounds 1a-b, displayed a linear, dose-dependent pharmacokinetic profile in rats. When tested in a chronic model of adjuvant-induced arthritis in rat, the ED50 of 5 (0.

View Article and Find Full Text PDF

A series of carbamoylmethylene linked prodrugs of 1 (BMS-582949), a clinical p38α inhibitor, were synthesized and evaluated. Though the phosphoryloxymethylene carbamates (3, 4, and 5) and α-aminoacyloxymethylene carbamates (22, 23, and 26) were found unstable at neutral pH values, fumaric acid derived acyloxymethylene carbamates (2, 28, and 31) were highly stable under both acidic and neutral conditions. Prodrugs 2 and 31 were also highly soluble at both acidic and neutral pH values.

View Article and Find Full Text PDF

A series of diphenylpyridylethanamine (DPPE) derivatives was identified exhibiting potent CETP inhibition. Replacing the labile ester functionality in the initial lead 7 generated a series of amides and ureas. Further optimization of the DPPE series for potency resulted in the discovery of cyclopentylurea 15d, which demonstrated a reduction in cholesterol ester transfer activity (48% of predose level) in hCETP/apoB-100 dual transgenic mice.

View Article and Find Full Text PDF

The synthesis, structure-activity relationships (SAR), and biological results of pyridyl-substituted azaindole based tricyclic inhibitors of IKK2 are described. Compound 4m demonstrated potent in vitro potency, acceptable pharmacokinetic and physicochemical properties, and efficacy when dosed orally in a mouse model of inflammatory bowel disease.

View Article and Find Full Text PDF

A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen receptor.

View Article and Find Full Text PDF

A novel series of imidazolin-2-ones were designed and synthesized as highly potent, orally active and muscle selective androgen receptor modulators (SARMs), with most of the compounds exhibiting low nM in vitro potency in androgen receptor (AR) binding and functional assays. Once daily oral treatment with the lead compound 11a (AR Ki = 0.9 nM, EC50 = 1.

View Article and Find Full Text PDF

N,N'-Disubstituted ketene aminals are bioisosteres of thioureas and are useful building blocks in many synthetic operations. A convenient one-pot synthesis of N,N'-disubstituted ketene aminals from activated methylene compounds and isothiocyanates is described. Most of these aminals exist in rotameric equilibrium around the central C=C bonds in solution, and the rotamers are stabilized by intramolecular hydrogen bonding both in solution and in solid states.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: