Introduction: Machine learning tasks often require a significant amount of training data for the resultant network to perform suitably for a given problem in any domain. In agriculture, dataset sizes are further limited by phenotypical differences between two plants of the same genotype, often as a result of different growing conditions. Synthetically-augmented datasets have shown promise in improving existing models when real data is not available.
View Article and Find Full Text PDFThe development of state-of-the-art convolutional neural networks (CNN) has allowed researchers to perform plant classification tasks previously thought impossible and rely on human judgment. Researchers often develop complex CNN models to achieve better performances, introducing over-parameterization and forcing the model to overfit on a training dataset. The most popular process for evaluating overfitting in a deep learning model is using accuracy and loss curves.
View Article and Find Full Text PDFA lack of sufficient training data, both in terms of variety and quantity, is often the bottleneck in the development of machine learning (ML) applications in any domain. For agricultural applications, ML-based models designed to perform tasks such as autonomous plant classification will typically be coupled to just one or perhaps a few plant species. As a consequence, each crop-specific task is very likely to require its own specialized training data, and the question of how to serve this need for data now often overshadows the more routine exercise of actually training such models.
View Article and Find Full Text PDF