Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments.
View Article and Find Full Text PDFLDL Receptor-related Protein-1 (LRP1/CD91) binds diverse ligands, many of which activate cell-signaling. Herein, we compared three LRP1 ligands that inhibit inflammatory responses triggered by lipopolysaccharide (LPS), including: enzymatically-inactive tissue-type plasminogen activator (EI-tPA); activated α-macroglobulin (αM); and S-PrP, a soluble derivative of nonpathogenic cellular prion protein (PrP). In bone marrow-derived macrophages, the N-methyl-D-aspartate receptor was essential for all three LRP1 ligands to activate cell-signaling and inhibit LPS-induced cytokine expression.
View Article and Find Full Text PDFExosomes and other extracellular vesicles (EVs) participate in cell-cell communication. Herein, we isolated EVs from human plasma and demonstrated that these EVs activate cell signaling and promote neurite outgrowth in PC-12 cells. Analysis of human plasma EVs purified by sequential ultracentrifugation using tandem mass spectrometry indicated the presence of multiple plasma proteins, including α-macroglobulin, which is reported to regulate PC-12 cell physiology.
View Article and Find Full Text PDFNonpathogenic cellular prion protein (PrP) demonstrates anti-inflammatory activity; however, the responsible mechanisms are incompletely defined. PrP exists as a GPI-anchored membrane protein in diverse cells; however, PrP may be released from cells by ADAM proteases or when packaged into extracellular vesicles (EVs). In this study, we show that a soluble derivative of PrP (S-PrP) counteracts inflammatory responses triggered by pattern recognition receptors in macrophages, including TLR2, TLR4, TLR7, TLR9, NOD1, and NOD2.
View Article and Find Full Text PDFEnzymatically inactive tissue-type plasminogen activator (EI-tPA) does not activate fibrinolysis, but interacts with the N-methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1) in macrophages to block innate immune system responses mediated by toll-like receptors. Herein, we examined the ability of EI-tPA to treat colitis in mice, induced by dextran sulfate sodium. In two separate studies, designed to generate colitis of differing severity, a single dose of EI-tPA administered after inflammation established significantly improved disease parameters.
View Article and Find Full Text PDFCellular prion protein (PrP) is a widely expressed glycosylphosphatidylinositol-anchored membrane protein. Scrapie prion protein is a misfolded and aggregated form of PrP responsible for prion-induced neurodegenerative diseases. Understanding the function of the nonpathogenic PrP monomer is an important objective.
View Article and Find Full Text PDFBackground: Astrocytes contribute to the crosstalk that generates chronic neuro-inflammation in neurological diseases; however, compared with microglia, astrocytes respond to a more limited continuum of innate immune system stimulants. Recent studies suggest that the fibrinolysis system may regulate inflammation. The goal of this study was to test whether fibrinolysis system components activate astrocytes and if so, elucidate the responsible biochemical pathway.
View Article and Find Full Text PDFTissue-type plasminogen activator (tPA) is a major activator of fibrinolysis, which also attenuates the pro-inflammatory activity of lipopolysaccharide (LPS) in bone marrow-derived macrophages (BMDMs) and in vivo in mice. The activity of tPA as an LPS response modifier is independent of its proteinase activity and instead, dependent on the N-methyl-D-aspartate Receptor (NMDA-R), which is expressed by BMDMs. The major Toll-like receptor (TLR) for LPS is TLR4.
View Article and Find Full Text PDFThe fibrinolysis proteinase tissue-type plasminogen activator (tPA, also known as PLAT) triggers cell signaling and regulates cell physiology. In PC12 cells, Schwann cells and macrophages, the N-methyl-D-aspartate receptor (NMDA-R) mediates tPA signaling. Plasminogen activator inhibitor-1 (PAI1, also known as SERPINE1) is a rapidly acting inhibitor of tPA enzyme activity.
View Article and Find Full Text PDFPLAUR encodes the urokinase receptor (uPAR), which promotes cell survival, migration, and resistance to targeted cancer therapeutics in glioblastoma cells in culture and in mouse model systems. Herein, we show that patient survival correlates inversely with PLAUR mRNA expression in gliomas of all grades, in glioblastomas, and in the subset of glioblastomas that demonstrate the mesenchymal gene expression signature. PLAUR clusters with genes that define the more aggressive mesenchymal subtype in transcriptome profiles of glioblastoma tissue and glioblastoma cells in neurospheres, which are enriched for multipotent cells with stem cell-like qualities.
View Article and Find Full Text PDFIn the peripheral nervous system, Schwann cells (SCs) demonstrate surveillance activity, detecting injury and undergoing -differentiation to support repair. SC receptors that detect peripheral nervous system injury remain incompletely understood. We used RT-PCR to profile ionotropic glutamate receptor expression in cultured SCs.
View Article and Find Full Text PDFBackground: In glioblastoma (GBM), the gene for epidermal growth factor receptor (EGFR) is frequently amplified. EGFR mutations also are common, including a truncation mutation that yields a constitutively active variant called EGFR variant (v)III. EGFRvIII-positive GBM progresses rapidly; however, the reason for this is not clear because the activity of EGFRvIII is attenuated compared with EGF-ligated wild-type EGFR.
View Article and Find Full Text PDF