Publications by authors named "Micai Zhong"

Article Synopsis
  • The study focuses on the roles of phosphatidylethanolamine-binding proteins (PEBPs), specifically FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1), in plant life history transitions such as germination and flowering time.
  • It highlights the significant variation in the copy numbers of FT-like and TFL1-like genes across different plant groups, particularly within angiosperms like the Lamiales.
  • The research identifies a systematic expansion of FT-like genes through specific duplication events in core Lamiales, revealing diverse expression patterns and suggesting functional diversification that contributes to flowering time variability in these plants.
View Article and Find Full Text PDF

Floral forms with an increased number of petals, also known as double-flower phenotypes, have been selected and conserved in many domesticated plants, particularly in ornamentals, because of their great economic value. The molecular and genetic mechanisms that control this trait are therefore of great interest, not only for scientists, but also for breeders. In this review, we summarize current knowledge of the gene regulatory networks of flower initiation and development and known mutations that lead to variation of petal number in many species.

View Article and Find Full Text PDF

Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae.

View Article and Find Full Text PDF

Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.

View Article and Find Full Text PDF

While roses are today among the most popular ornamental plants, the petals and fruits of some cultivars have flavored foods for millennia. The genetic origins of these edible cultivars remain poorly investigated. We collected the major varieties of edible roses available in China, assembled their plastome sequences, and phased the haplotypes for internal transcribed spacers (ITS1/ITS2) of the 18S-5.

View Article and Find Full Text PDF

Prickles act against herbivores, pathogens or mechanical injury, while also preventing water loss. However, whether prickles have new function and the molecular genetics of prickle patterning remain poorly explored. Here, we generated a high-quality reference genome assembly for 'Basye's Thornless' (BT), a prickle-free cultivar of , to identify genetic elements related to stem prickle development.

View Article and Find Full Text PDF

Roses are important horticultural plants with enormous diversity in flowers and flowering behavior. However, molecular regulation of flowering time variation in roses remains poorly characterized. Here, we report an expansion of the genes that correlates well with the switch to prostrate-to-erect growth of shoots upon flowering in 'Basye's Thornless' (BT).

View Article and Find Full Text PDF

The rambler Crép. is an important founder species during modern rose domestication. However, the chloroplast genome (plastome) of this wild species remains unavailable.

View Article and Find Full Text PDF

Genome-wide identification of WD40-like genes reveals a duplication of COP1-like genes, one of the key players involved in regulation of flowering time and photomorphogenesis, with strong functional diversification in Rosaceae. WD40 proteins play crucial roles in a broad spectrum of developmental and physiological processes. Here, we conducted a systematic characterization of this family of genes in Rosa chinensis 'Old Blush' (OB), a founder genotype for modern rose domestication.

View Article and Find Full Text PDF

Polyploidization is a major driver of speciation and its importance to plant evolution has been well recognized. Bamboos comprise one diploid herbaceous and three polyploid woody lineages, and are members of the only major subfamily in grasses that diversified in forests, with the woody members having a tree-like lignified culm. In this study, we generated four draft genome assemblies of major bamboo lineages with three different ploidy levels (diploid, tetraploid, and hexaploid).

View Article and Find Full Text PDF

Roses are important woody plants featuring a set of important traits that cannot be investigated in traditional model plants. Here, we used the restriction-site associated DNA sequencing (RAD-seq) technology to develop a high-density linkage map of the backcross progeny (BC1F1) between Rosa chinensis 'Old Blush' (OB) and R. wichuraiana 'Basyes' Thornless' (BT).

View Article and Find Full Text PDF

Background: Roses are important plants for human beings with pivotal economical and biological traits like continuous flowering, flower architecture, color and scent. Due to frequent hybridization and high genome heterozygosity, classification of roses and their relatives remains a big challenge.

Results: Here, to identify potential markers for phylogenetic reconstruction and to reveal the patterns of natural selection in roses, we generated sets of high quality and comprehensive reference transcriptomes for Rosa chinensis 'Old Blush' (OB) and R.

View Article and Find Full Text PDF

3-Acetonyl-3-hydroxyoxindole (AHO) induces systemic acquired resistance (SAR) in Nicotiana. However, the underlying molecular mechanism is not well understood. To understand the molecular regulation during SAR induction, we examined mRNA levels, microRNA (miRNA) expression, and their regulatory mechanisms in control and AHO-treated tobacco leaves.

View Article and Find Full Text PDF

Applied nitrogen (N) fertilizer significantly increases the leaf yield. However, most N is not utilized by the plant, negatively impacting the environment. To date, little is known regarding N utilization genes and mechanisms in the leaf production.

View Article and Find Full Text PDF

Genetic control of the timing of flowering in woody plants is complex and has yet to be adequately investigated due to their long life-cycle and difficulties in genetic modification. Studies in , one of the best woody plant models, have revealed a highly conserved genetic network for flowering timing in annuals. However, traits like continuous flowering cannot be addressed with .

View Article and Find Full Text PDF