The reactions of gas-phase Cu(+)((1)S) and Cu(+)((3)D) with CF(3)X and CH(3)X (X = Cl, Br, and I) have been examined experimentally using the drift cell technique at 3.5 Torr in He at room temperature. State-specific product channels and overall bimolecular rate constants for depletion of the two Cu(+) states were determined using electronic state chromatography.
View Article and Find Full Text PDFThe previously reported Ni(II) complex, Tp*Ni(κ(3)-BH(4)) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate anion), which has an S = 1 spin ground state, was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy as a solid powder at low temperature, by UV-vis-NIR spectroscopy in the solid state and in solution at room temperature, and by paramagnetic (11)B NMR. HFEPR provided its spin Hamiltonian parameters: D = 1.91(1) cm(-1), E = 0.
View Article and Find Full Text PDFThe specific rotation of (P)-2,3-hexadiene (1) was measured as a function of wavelength for the gas phase, the neat liquid, and solutions. There was a surprisingly large difference between the gas phase and condensed phase values. The specific rotation was calculated using B3LYP and CCSD, and the difference in energy between the three low energy conformers was estimated at the G3 level.
View Article and Find Full Text PDFThe current ability of ab initio models to compute chiroptical properties such as optical rotatory dispersion and electronic circular dichroism spectra is reviewed. Comparison between coupled cluster linear response theory and experimental data (both gas and liquid phase) yields encouraging results for small to medium-sized chiral molecules including rigid species such as (S)-2-chloropropionitrile and (P)-[4]triangulane, as well as conformationally flexible molecules such as (R)-epichlorohydrin. More problematic comparisons are offered by (S)-methyloxirane, (S)-methylthiirane, and (1S,4S)-norbornenone, for which the comparison between theory and experiment is much poorer.
View Article and Find Full Text PDFCoupled cluster and density functional models of specific rotation and vacuum UV (VUV) absorption and circular dichroism spectra are reported for the conformationally flexible molecules (R)-3-chloro-1-butene and (R)-2-chlorobutane. Coupled cluster length- and modified-velocity-gauge representations of the Rosenfeld optical activity tensor yield significantly different specific rotations for (R)-3-chloro-1-butene, with the latter providing much closer comparison (within 3%) to the available gas-phase experimental data at 355 and 633 nm. Density functional theory overestimates the experimental rotations for (R)-3-chloro-1-butene by approximately 80%.
View Article and Find Full Text PDFVertical and adiabatic excitation energies of the lowest (2)A(') excited state in the water-hydroxyl complex have been determined using coupled cluster, multireference configuration interaction, multireference perturbation theory, and density-functional methods. A significant redshift of about 0.4 eV in the vertical excitation energy of the complex compared to that of the hydroxyl radical monomer is found with the coupled cluster calculations validating previous results.
View Article and Find Full Text PDFCoupled-cluster and density-functional methods have been used to determine specific rotations and electronic circular dichroism (ECD) rotational strengths for (S)-2-chloropropionitrile. Coupled-cluster specific rotations using both the length- and velocity-gauge representations of the electric-dipole operator, computed with basis sets of triple-zeta quality containing up to 326 functions, compare very well with recently reported gas-phase cavity-ring-down polarimetry data. ECD rotational strengths for the six lowest-lying excited states are found to vary in sign, and the second excited state, which has a larger rotational strength than the first by a factor of 4, was found to yield a much larger contribution (by a factor of 10) to the overall negative specific rotation observed both experimentally and theoretically.
View Article and Find Full Text PDFThe C(2) molecule exhibits unusual bonding and several low-lying excited electronic states, making the prediction of its potential energy curves a challenging test for quantum chemical methods. We report full configuration interaction results for the X (1)Sigma(g) (+), B (1)Delta(g), and B(') (1)Sigma(g) (+) states of C(2), which exactly solve the electronic Schrodinger equation within the space spanned by a 6-31G( *) basis set. Within the D(2h) subgroup used by most electronic structure programs, these states all have the same symmetry ((1)A(g)), and all three states become energetically close for interatomic distances beyond 1.
View Article and Find Full Text PDF