Publications by authors named "Micaela Troglia Gamba"

The disruptive effect of radio frequency interference (RFI) on global navigation satellite system (GNSS) signals is well known, and in the last four decades, many have been investigated as countermeasures. Recently, low-Earth orbit (LEO) satellites have been looked at as a good opportunity for GNSS RFI monitoring, and the last five years have seen the proliferation of many commercial and academic initiatives. In this context, this paper proposes a new spaceborne system to detect, classify, and localize terrestrial GNSS RFI signals, particularly jamming and spoofing, for civil use.

View Article and Find Full Text PDF

The Internet of Things (IoT) and Industrial IoT (IIoT) have developed rapidly in the past few years, as both the Internet and "things" have evolved significantly. "Things" now range from simple Radio Frequency Identification (RFID) devices to smart wireless sensors, intelligent wireless sensors and actuators, robotic things, and autonomous vehicles operating in consumer, business, and industrial environments. The emergence of "intelligent things" (static or mobile) in collaborative autonomous fleets requires new architectures, connectivity paradigms, trustworthiness frameworks, and platforms for the integration of applications across different business and industrial domains.

View Article and Find Full Text PDF

Many GNSS applications have been experiencing some constantly growing needs in terms of security and reliability. To address some of them, both GPS and Galileo are proposing evolutions of their legacy civil signals, embedding features of authentication. This paper focuses on the Galileo Open Signal Navigation Message Authentication (OSNMA) and describes its implementation within a real-time software receiver for ARM-based embedded platforms.

View Article and Find Full Text PDF

In the past years, many techniques have been researched and developed to detect and identify the interference sources of Global Navigation Satellite System (GNSS) signals. In this paper, we utilize a simple and portable application to map interference sources in real-time. The results are promising and show the potential of the crowdsourcing for monitoring and mapping GNSS interference distribution.

View Article and Find Full Text PDF

Global Navigation Satellite Systems (GNSS) broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth's surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R), whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms.

View Article and Find Full Text PDF