Biosensors (Basel)
November 2022
To combat pandemics, there is a need for rapid point-of-care diagnostics to identify infected patients and to track the spread of the disease. While recent progress has been made in response to COVID-19, there continues to be a need for point-of-care diagnostics capable of detecting biomarkers-such as antibodies-in whole blood. We have recently reported the development of thermally responsive alkane partitions (TRAPs) for the automation of point-of-care immuno-magnetic assays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
For point-of-care diagnostic tools to be impactful, they must be inexpensive, equipment-free, and sample-to-answer (i.e., require no user intervention).
View Article and Find Full Text PDFSevere internal trauma results in millions of hospitalizations each year, including thousands of deaths caused by subsequent multiple organ failure. The majority of these deaths occur within the first 24 h, and thus, rapid diagnosis of internal trauma severity is necessary for immediate treatment. For early organ damage identification, diagnosis in point-of-care settings is crucial for rapid triage and treatment.
View Article and Find Full Text PDFThe COVID-19 global pandemic of 2019-2020 pointedly revealed the lack of diagnostic solutions that are able to keep pace with the rapid spread of the virus. Despite the promise of decades of lab-on-a-chip research, no commercial products were available to deliver rapid results or enable testing in the field at the onset of the pandemic. In this critical review, we assess the current state of progress on the development of point-of-care technologies for the diagnosis of viral diseases that cause pandemics.
View Article and Find Full Text PDFAntimicrobial stewardship practices are critical in preventing the further erosion of treatment options for bacterial infections. Yet, at the same time, determination of an infection's antimicrobial susceptibility requires multiple rounds of culture and expensive lab automation systems. In this work, we report the use of paper-based surface enhanced Raman spectroscopy (SERS) sensors and portable instrumentation to phenotypically discriminate multi-drug resistance with fewer culture steps than conventional clinical microbiology.
View Article and Find Full Text PDF