Publications by authors named "Micaela Harrasser"

Background: Tumors in the distal esophagus (EAC), gastro-esophageal junction including cardia (GEJAC), and stomach (GAC) develop in close proximity and show strong similarities on a molecular and cellular level. However, recent clinical data showed that the effectiveness of chemo-immunotherapy is limited to a subset of GEAC patients and that EACs and GEJACs generally benefit less from checkpoint inhibition compared to GACs. As the composition of the tumor immune microenvironment drives response to (immuno)therapy we here performed a detailed immune analysis of a large series of GEACs to facilitate the development of a more individualized immunomodulatory strategy.

View Article and Find Full Text PDF

The analysis of peripheral blood mononuclear cells (PBMCs) by flow cytometry holds promise as a platform for immune checkpoint inhibition (ICI) biomarker identification. Our aim was to characterize the systemic immune compartment in resectable esophageal adenocarcinoma patients treated with neoadjuvant ICI therapy. In total, 24 patients treated with neoadjuvant chemoradiotherapy (nCRT) and anti-PD-L1 (atezolizumab) from the PERFECT study (NCT03087864) were included and 26 patients from a previously published nCRT cohort.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

Thrombin generation is pivotal to both physiological blood clot formation and pathological development of disseminated intravascular coagulation (DIC). In critical illness, extensive cell damage can release histones into the circulation, which can increase thrombin generation and cause DIC, but the molecular mechanism is not clear. Typically, thrombin is generated by the prothrombinase complex, comprising activated factor X (FXa), activated cofactor V (FVa), and phospholipids to cleave prothrombin in the presence of calcium.

View Article and Find Full Text PDF

We have developed a humanized bi-specific T-cell engager (BiTE) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), a cell surface antigen present on a range of malignancies and cancer-initiating cells. Focusing initially on pancreatic cancer, we demonstrated that our ROR1 BiTE results in T cell mediated and antigen-specific cytotoxicity against ROR1-expressing pancreatic cancer cell lines at exceedingly low concentrations (0.1 ng/mL) and low effector to target ratios.

View Article and Find Full Text PDF

Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied.

View Article and Find Full Text PDF

The interface between malignant melanoma and patient immunity has long been recognised and efforts to treat this most lethal form of skin cancer by activating immune responses with cytokine, vaccine and also antibody immunotherapies have demonstrated promise in limited subsets of patients. In the present study, we discuss different antibody immunotherapy approaches evaluated in the context of melanoma, each designed to act on distinct targets and to employ different mechanisms to restrict tumour growth and spread. Monoclonal antibodies recognising melanoma-associated antigens such as CSPG4/MCSP and targeting elements of tumour-associated vasculature (VEGF) have constituted long-standing translational approaches aimed at reducing melanoma growth and metastasis.

View Article and Find Full Text PDF