The control of non-coding repeated DNA by DNA methylation plays an important role in genomic stability, contributing to health and healthy aging. Mind-body practices can elicit psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. However, in this context the effects of movement meditations have rarely been examined.
View Article and Find Full Text PDFMind-body practices and meditation have been increasingly studied in recent years due to their beneficial effects on cognition, and physical and psychological health. Growing evidence suggests that these practices could be utilized as interventions to impact age-related biological processes, such as cognitive decline, inflammation, and homeostatic dysregulation. Indeed, it has been reported that mindful meditation may induce neuroplasticity in brain regions involved in control of attention, emotional regulation, and self-awareness.
View Article and Find Full Text PDFMany environmental and lifestyle related factors may influence the physiology of the brain and body by acting on fundamental molecular pathways, such as the hypothalamus-pituitary-adrenal axis (HPA) and the immune system. For example, stressful conditions created by adverse early-life events, unhealthy habits and low socio-economic status may favor the onset of diseases linked to neuroendocrine dysregulation, inflammation and neuroinflammation. Beside pharmacological treatments used in clinical settings, much attention has been given to complementary treatments such as mind-body techniques involving meditation that rely on the activation of inner resources to regain health.
View Article and Find Full Text PDFMany studies have consistently demonstrated an epigenetic link between environmental stimuli and physiological as well as cognitive responses. Epigenetic mechanisms represent a way to regulate gene activity in real time without modifying the DNA sequence, thus allowing the genome to adapt its functions to changing environmental contexts. Factors such as lifestyle, behavior, and the practice of sitting and moving mindful activities have been shown to be important means of environmental enrichment.
View Article and Find Full Text PDFPrevious studies demonstrated exercise-induced modulation of neurotrophins, such as Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF). Yet, no study that we are aware of has examined their change as a function of different training paradigms. In addition, the understanding of the possible training-induced relationship between NGF and BDNF change is still lacking.
View Article and Find Full Text PDFPoly(ADP-ribosyl)ation (PARylation) is a posttranslational protein modification catalyzed by members of the poly(ADP-ribose) polymerase (PARP) enzyme family. PARylation regulates a wide variety of biological processes in most eukaryotic cells including energy metabolism and cell death, maintenance of genomic stability, chromatin structure and transcription. Inside the nucleus, cross-talk between PARylation and other epigenetic modifications, such as DNA and histone methylation, was already described.
View Article and Find Full Text PDFMind-body practices (MBP) are known to induce electrophysiological and morphological changes, whereas reports related to changes of neurotrophins are surprisingly scarce. Consequently, in the current paper, we focused on the Quadrato motor training (QMT), a newly developed whole-body movement-based MBP, which has been reported to enhance creativity. Here we report the effects of 4 weeks of daily QMT on creativity and proNGF level in two interrelated studies.
View Article and Find Full Text PDFUsing whole-brain structural measures coupled to analysis of salivary brain-derived neurotrophic factor (BDNF), we demonstrate sensory motor training-induced plasticity, including cerebellar gray matter volume increment and increased BDNF level. The increase of cerebellar volume was positively correlated with the increase of BDNF level.
View Article and Find Full Text PDFThe ability of cells to respond to changes in their environment is mediated by transcription factors that remodel chromatin and reprogram expression of specific subsets of genes. In Saccharomyces cerevisiae, changes in carbon source lead to gene induction by Adr1 and Cat8 that are known to require the upstream function of the Snf1 protein kinase, the central regulator of carbon metabolism, to exert their activating effect. How Snf1 facilitates transcription activation by Adr1 and Cat8 is not known.
View Article and Find Full Text PDFInsight into the mechanisms by which ambient air particulate matter mediates adverse health effects is needed to provide biological plausibility to epidemiological studies demonstrating an association between PM(10) exposure and increased morbidity and mortality. In vitro studies of the effects of air pollution on human cells help to establish conditions for the analysis of cause-effect relationships. One of the major challenges is to test native atmosphere in its complexity, rather than the various components individually.
View Article and Find Full Text PDFThe contribution of histone-DNA interactions to nucleosome positioning in vivo is currently a matter of debate. We argue here that certain nucleosome positions, often in promoter regions, in yeast may be, at least in part, specified by the DNA sequence. In contrast other positions may be poorly specified.
View Article and Find Full Text PDFIn vivo nucleosomes often occupy well-defined preferred positions on genomic DNA. An important question is to what extent these preferred positions are directly encoded by the DNA sequence itself. We derive here from in vivo positions, accurately mapped by partial micrococcal nuclease digestion, a translational positioning signal that identifies the approximate midpoint of DNA bound by a histone octamer.
View Article and Find Full Text PDFHistone acetylation regulates gene expression. Whether this is caused by a general increase in nucleosome fluidity due to charge neutralization or by a more specific code is still matter of debate. By using a set of glucose-repressed Adr1-dependent genes of Saccharomyces cerevisiae, whose transcription was previously shown to require both Gcn5 and Esa1, we asked how changes of histone acetylation patterns at the promoter nucleosomes regulate chromatin remodelling and activation.
View Article and Find Full Text PDFGenetic information is packaged in the highly dynamic nucleoprotein structure called chromatin. Many biological processes are regulated via post-translational modifications of key proteins. Acetylation of lysine residues at the N-terminal histone tails is one of the most studied covalent modifications influencing gene regulation in eukaryotic cells.
View Article and Find Full Text PDFNucleosome remodelling complexes play a key role in gene activation in response to environmental changes by driving promoter chromatin to reach an accessible configuration. They also mediate genome-wide chromatin organization, although their role in processes other than activation-related chromatin remodelling are poorly understood. The Saccharomyces cerevisiae ADH2 gene represents an excellent model for understanding the role of chromatin structure and remodelling in gene regulation.
View Article and Find Full Text PDFHistone proteins play structural and functional roles in all nuclear processes. They undergo different types of covalent modifications, defined in their ensemble as epigenetic because changes in DNA sequences are not involved. Histone acetylation emerges as a central switch that allows interconversion between permissive and repressive chromatin domains in terms of transcriptional competence.
View Article and Find Full Text PDFThe chromatin structure of several Saccharomyces cerevisiae ADR1-dependent genes was comparatively analyzed in vivo in order to evaluate the role of promoter architecture in transcriptional control. In repressing conditions (high glucose) a nucleosome particle always obstructs the TATA box, immediately adjacent to an upstream-located nucleosome-free region containing a cluster of Adr1 binding sites. Upon derepression the TATA box-containing nucleosome is destabilized according to a mechanism shared by all of the genes studied.
View Article and Find Full Text PDFNucleosomes have been considered until recently to be stable and uniquely localized particles. We focus here on two properties of nucleosomes that are emerging as central attributes of their functions: mobility and multiplicity of localization. The biological relevance of these phenomena is based on the fact that chromatin functions depend on the relative stability of nucleosomes, on their covalent or conformational modifications, their dynamics, their localization, and the density of their distribution.
View Article and Find Full Text PDFWe report that in vivo increased acetylation of the repressed Saccharomyces cerevisiae ADH2 promoter chromatin, as obtained by disrupting the genes for the two deacetylases HDA1 and RPD3, destabilizes the structure of the TATA box-containing nucleosome. This acetylation-dependent chromatin remodeling is not sufficient to allow the binding of the TATA box-binding protein, but facilitates the recruitment of the transcriptional activator Adr1 and induces faster kinetics of mRNA accumulation when the cells are shifted to derepressing conditions.
View Article and Find Full Text PDFThe involvement of chromatin structure and organization in transcriptional regulatory pathways has become evident. One unsolved question concerns the molecular mechanisms of chromatin remodeling during in vivo promoter activation. By using a high resolution in vivo analysis we show that when yeast cells are exposed to a regulatory signal the positions of specific nucleosomes change.
View Article and Find Full Text PDF