Publications by authors named "Micaela Carvajal"

Article Synopsis
  • - This article reviews innovative sustainable plant nutrition concepts, highlighting the impact of biostimulants on enhancing plant nutrition and their potential role in biofertilization.
  • - It discusses the importance of micronutrients for plant health, strategies to improve plants' resilience to nutrient contaminants, and the benefits of biofortification for human health.
  • - The article also covers emerging nanotechnology in fertilization, the relevance of circular economy principles for resource management, and concludes with a look at future challenges and opportunities in sustainable plant systems.
View Article and Find Full Text PDF

Membrane vesicles isolated from vegetable tissues have shown promise in encapsulation technologies used in industries like food and cosmetics, offering innovative approaches to product development. However, their associated linked metabolites have not been studied. Lemon vesicle research not only adds value to the lemon crop ( L.

View Article and Find Full Text PDF

Secondary metabolites play an essential role in plant defense. However, the role of glucosinolates and phenols in brassica crop yield in the context of environmentally friendly agricultural practices has not been established. Our study investigated the effects of a Brassica extract, rich in these metabolites, on the physiology and metabolism of broccoli (Brassica oleracea L.

View Article and Find Full Text PDF

Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method.

View Article and Find Full Text PDF

Elicited pumpkin was evaluated as a potential daily consumption product able to modulate the gut microbiota. An in vitro dynamic colonic fermentation performance with microbiota from obese volunteers was used. Prebiotic effects were observed after the pumpkin treatment.

View Article and Find Full Text PDF

Aquaporins (AQPs), membrane proteins responsible for facilitating water transport, found in plant membrane vesicles (MV), have been related to the functionality and stability of MV. We focused on AQPs obtained from broccoli, as they show potential for biotechnological applications. To gain further insight into the role of AQPs in MV, we describe the heterologous overexpression of two broccoli AQPs ( and ) in , resulting in their purification with high yield (0.

View Article and Find Full Text PDF

Salinity and excess zinc are two main problems that have limited agriculture in recent years. Aquaporins are crucial in regulating the passage of water and solutes through cells and may be essential for mitigating abiotic stresses. In the present study, the adaptive response to moderate salinity (60 mM NaCl) and excess Zn (1 mM ZnSO ) were compared alone and in combination in Cucumis sativus L.

View Article and Find Full Text PDF

The aim of this study was to investigate the impact of changes in aquaporin expression on the growth of onion ( L.) plants when subjected to dual applications of microorganism-based soil amendments and foliar nanoencapsulated mineral nutrients. Multiple physiological parameters related to water, gas exchange, and nutrient content in leaf, root, and bulb tissues were determined.

View Article and Find Full Text PDF

Isothiocyanates may have antibacterial activity against , but there are different variables related to Brassicaceae-derived samples that could affect their efficacy. This work studied the influence of source variety, concentration, gastric digestion, and encapsulation of samples on their bioactive response against . The antibacterial activity of raw sprouts (red cabbage and red radish) showed the highest antibacterial effect, which was consistent with a higher amount of isothiocyanates.

View Article and Find Full Text PDF

Blindness is a physiopathy characterized by apical abortion that particularly affects the Brassica family. The occurrence of blindness has been related to exposure to low temperatures during early developmental stages. However, the causes of this selective sensitivity and how they affect the correct development remain unknown.

View Article and Find Full Text PDF

The exogenous application of phenolic compounds is increasingly recognized as a valuable strategy for promoting growth and mitigating the adverse effects of abiotic stress. However, the biostimulant effect under optimal conditions has not been thoroughly explored. In this study, we investigated the impact of foliar application of flavonoids, specifically CropBioLife (CBL), on tomato plants grown under controlled conditions.

View Article and Find Full Text PDF

Abiotic stresses, such as salinity and boron toxicity/deficiency, are prevalent in arid and semi-arid regions where broccoli is largely cultivated. This study aimed to investigate the physiological response of broccoli leaves to these stresses, focusing on parameters such as growth, relative water content, stomatal conductance, and mineral concentration after 15 days of treatment application. The effects of individual and combined stresses of salinity and boron (deficiency and toxicity) were examined.

View Article and Find Full Text PDF

Background: Recently, vesicles derived from plant cell membranes have received attention for their potential use as active biomolecules and nanocarriers, and obtaining them from organic crops may be an interesting option because different farming systems can affect production, plant secondary metabolism and biochemistry of cell membranes. The present study aimed to determine how organic and conventional farming affects the mineral nutrition, gas exchange, CO fixation and biochemical composition of lemon fruits, which could have an impact on the different fractions of cell membranes in pulp and juice.

Results: Organic trees had higher intrinsic water use efficiency (WUEi) but conventional trees had higher stomatal conductance (gs) and nitrogen use efficiency (NUtE).

View Article and Find Full Text PDF

The gut microbiota profile is determined by diet composition, and therefore this interaction is crucial for promoting specific bacterial growth and enhancing the health status. Red radish (.) contains several secondary plant metabolites that can exert a protective effect on human health.

View Article and Find Full Text PDF

As salinity is one of the main environmental stresses that reduces the growth and productivity of crops by reducing water uptake and transport, in this work, we associated the physiological tolerance response of onion to increased NaCl concentration (from 25, 50, 75, to 100 mM) with the expression of aquaporins. Measurements of transpiration, gas exchange and nutrients content in leaf, roots and bulb tissues were determined in relation to the expression of PIP2, PIP1, and TIP2 aquaporin genes. The results indicated a significant decrease in growth in leaves, roots and bulbs only when 50 mM NaCl was applied.

View Article and Find Full Text PDF

Phenolic compounds and glucosinolates are secondary plant metabolites that play fundamental roles in plant resistance to abiotic stress. These compounds have been found to increase in stress situations related to plant adaptive capacity. This review assesses the functions of phenolic compounds and glucosinolates in plant interactions involving abiotic stresses such as drought, salinity, high temperature, metals toxicity, and mineral deficiency or excess.

View Article and Find Full Text PDF

Broccoli (Brassica oleracea var. italica) is an important crop worldwide, and its regular consumption is associated with health benefits due to the presence of various bioactive compounds. An optimal water balance and homeostasis are needed for plant growth; in this sense, aquaporins play a crucial role.

View Article and Find Full Text PDF

Macrophages have emerged as important therapeutic targets in many human diseases. The aim of this study was to analyze the effect of broccoli membrane vesicles and sulphoraphane (SFN), either free or encapsulated, on the activity of human monocyte-derived M1 and M2 macrophage primary culture. Our results show that exposure for 24 h to SFN 25 µM, free and encapsulated, induced a potent reduction on the activity of human M1 and M2 macrophages, downregulating proinflammatory and anti-inflammatory cytokines and phagocytic capability on The broccoli membrane vesicles do not represent inert nanocarriers, as they have low amounts of bioactive compounds, being able to modulate the cytokine production, depending on the inflammatory state of the cells.

View Article and Find Full Text PDF

In salt-sensitive plants, root hydraulic conductivity is severely inhibited by NaCl, rapidly leading to the loss of water balance. However, halophytic plants appear to effectively control plant water flow under salinity conditions. In this study, we tested the hypothesis that Na is the principal salt factor responsible for the enhancement of aquaporin-mediated water transport in the roots of halophytic grasses, and this enhancement plays a significant role in the maintenance of water balance, gas exchange, and the growth of halophytic plants exposed to salinity.

View Article and Find Full Text PDF

Isothiocyanates (ITCs) have low stability in aqueous conditions, reducing their bioavailability when used as food ingredients. Therefore, the aim of this work was to increase the stability of the ITCs present in extracts of Bimi® edible parts by nanoencapsulation using cauliflower-derived plasma membrane vesicles. The bioactivity of these nanoencapsulates was evaluated in a HepG2 hepatocyte cell line in a model for low-grade chronic inflammation.

View Article and Find Full Text PDF

At present, there is a growing interest in finding new non-toxic anti-inflammatory drugs to treat inflammation, which is a key pathology in the development of several diseases with considerable mortality. Sulforaphane (SFN), a bioactive compound derived from plants, was shown to be promising due to its anti-inflammatory properties and great potential, though its actual clinical use is limited due to its poor stability and bioavailability. In this sense, the use of nanocarriers could solve stability-related problems.

View Article and Find Full Text PDF

Context: As the interest on the research of plant derived bioactive peptides (BPs) for nutraceutical, cosmeceutical and medical applications is increasing, in this work, the application of peptide derived from broccoli to keratinocytes was studied.

Objective: We focussed on the characterization of different peptides hydrolysates from broccoli stems [extracted from total protein (E) and from membrane protein (MF)], and their activity when applied to human keratinocytes.

Materials And Methods: Peptide mixtures from broccoli stems (E and MF) were characterized by proteomics.

View Article and Find Full Text PDF

Nanotechnology brings to agriculture new forms of fertilizer applications, which could be used to reduce environmental contamination and increase efficiency. In this study, foliar fertilization with nanoencapsulated boron (B) was studied in comparison to an ionic B (non-encapsulated) application in young B-deficient almond trees grown under a controlled environment. B movement within the plant in relation to the leaf gas exchange, water relations parameters, and root hydraulic conductance was measured.

View Article and Find Full Text PDF

Context: The development of nanocarriers of plant origin, such as plant cell membranes, has recently been investigated. Also, plant bioactive compounds as sulforaphane (SFN) from broccoli have recognized antioxidant or anticancer properties.

Objective: To investigate the capacity of membrane vesicles from broccoli (BM-vesicles) to encapsulate SFN and their application in the cancer cell line.

View Article and Find Full Text PDF

The aim of the study was to evaluate the influence of the red cabbage extracts on the bioaccessibility of their isothiocyanates, and their effect on the intestinal microbiota using a dynamic model of human digestion treated with the gut microbiome of obese adults. The elicitation of red cabbage plants with methyl jasmonate (MeJA) duplicated the content of glucosinolates (GSLs) in the plant organs used for elaborating the encapsulated formula. The use of plasma membrane vesicles, according to a proper methodology and technology, showed a high retention of sulforaphane (SFN) and indol-3-carbinol (I3C) over the course of the 14-day digestion study.

View Article and Find Full Text PDF