Hydropower plants represent one of the greatest threats for freshwater fish by fragmenting the habitat and avoiding the species dispersal. This type of dispersal barrier is often disregarded when predicting freshwater species distribution due to the complexity in inserting the species dispersal routes, and thus the barriers, into the models. Here, we evaluate the impact of including hydroelectric dams into species distribution models through asymmetrical dispersal predictors on the predicted geographic distribution of freshwater fish species.
View Article and Find Full Text PDFEnviron Monit Assess
March 2022
Predicting the geographic distribution of plants that provide ecosystem services is essential to understand the adaptation of communities and conserve that group toward climate change. Predictions can be more accurate if changes in physiological characteristics of species due to those changes are included. Thus, we aimed to evaluate the impacts of climate change on the different hierarchical levels of Apuleia leiocarpa (Vogel) J.
View Article and Find Full Text PDFIt is essential to predict areas of losses or exchanges of ecosystem services to adapt communities to the impacts caused by climate change. Particularly for provisioning ecosystem services provided by economically important plant species, understanding the association between climate change impacts and deforestation of native vegetation increases the accuracy of those predictions. Thus, we aim to (i) map the richness of provisioning ecosystem services from economically important native plants; (ii) use forecasts (present and future) of the distribution of ecosystem services to assess areas of changes in the number and type of provisioning ecosystems services.
View Article and Find Full Text PDF