J Med Imaging (Bellingham)
January 2025
Purpose: We aim to investigate the localization, visibility, and measurement of lung nodules in digital chest tomosynthesis (DTS).
Approach: Computed tomography (CT), maximum intensity projections (CT-MIP) (transaxial versus coronal orientation), and computer-aided detection (CAD) were used as location reference, and inter- and intra-observer agreement regarding lung nodule size was assessed. Five radiologists analyzed DTS and CT images from 24 participants with lung , focusing on lung nodule localization, visibility, and measurement on DTS.
Purpose: Chest tomosynthesis (CTS) has a relatively longer acquisition time compared with chest X-ray, which may increase the risk of motion artifacts in the reconstructed images. Motion artifacts induced by breathing motion adversely impact the image quality. This study aims to reduce these artifacts by excluding projection images identified with breathing motion prior to the reconstruction of section images and to assess if motion compensation improves overall image quality.
View Article and Find Full Text PDFAims: The aims of the present study were to, for both a full-dose protocol and an ultra-low dose (ULD) protocol, compare the image quality of chest CT examinations reconstructed using TrueFidelity (Standard kernel) with corresponding examinations reconstructed using ASIR-V (Lung kernel) and to evaluate if post-processing using an edge-enhancement filter affects the noise level, spatial resolution and subjective image quality of clinical images reconstructed using TrueFidelity.
Methods: A total of 25 patients were examined with both a full-dose protocol and an ULD protocol using a GE Revolution APEX CT system (GE Healthcare, Milwaukee, USA). Three different reconstructions were included in the study: ASIR-V 40%, DLIR-H, and DLIR-H with additional post-processing using an edge-enhancement filter (DLIR-H + E2).