Pork belly brining is a time-consuming step of bacon production that needs to be studied and enhanced through suitable technologies. In this sense, this study aimed at evaluating the impact of ultrasound (US), mechanical agitation (AG), and static brine (SB) on the kinetics of water loss (WL), solids gain (SG), and salt content (SC) of pork belly during brining under different temperatures. Mathematical models were used to estimate mass transfer rates, equilibrium parameters, and thermodynamic properties.
View Article and Find Full Text PDF(1) Background: The contribution of gene-specific variants for congenital heart disease, one of the most common congenital disabilities, is still far from our complete understanding. Here, we applied a disease model using human-induced pluripotent stem cells (hiPSCs) to evaluate the function of DAND5 on human cardiomyocyte (CM) differentiation and proliferation. (2) Methods: Taking advantage of our patient-derived iPSC line, we used CRISPR-Cas9 gene-editing to generate a set of isogenic hiPSCs (-corrected and full-mutant).
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) from individual patient basis are considered a powerful resource to model human diseases. However, to study complex multigenic diseases such as Congenital Heart Disease, it is crucial to generate perfect isogenic controls to understand gene singularity and contribution. Here, we report the engendering of an isogenic hiPSC line with homozygous correction of c.
View Article and Find Full Text PDF