KRAS mutations, which are the main cause of the pathogenesis of lethal pancreatic adenocarcinomas, impair the functioning of the GTPase subunit, thus rendering it constitutively active and signaling intracellular pathways that end with cell transformation. In the present study, the AsPC-1 cell line, which has a G12D-mutated KRAS gene sequence, was utilized as a cellular model to test peptide nucleic acid-based antisense technology. The use of peptide nucleic acids (PNAs) that are built to exhibit improved hybridization specificity and have an affinity for complementary RNA and DNA sequences, as well as a simple chemical structure and high biological stability that affords resistance to nucleases and proteases, enabled targeting of the KRAS-mutated gene to inhibit its expression at the translation level.
View Article and Find Full Text PDFHead and neck cancer squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, resulting in over 600,000 new diagnoses annually. Traditionally, HNCC has been related to tobacco and alcohol exposure; however, over the past decade, a growing number of head and neck cancers are attributed to human papillomavirus (HPV) infection. 5-Aza-2'-deoxycytidine (5-AzaD) was demonstrated as an effective chemotherapeutic agent for acute myelogenous leukaemia.
View Article and Find Full Text PDFDysregulation of glucose homeostasis followed by chronic hyperglycemia is a hallmark of diabetes mellitus (DM), a disease spreading as a worldwide pandemic for which there is no satisfactory dietary treatment or cure. The development of glucose-controlling drugs that can prevent complications of DM, such as hyperglycemia and oxidative stress, which contribute to the impairment of the key physiological processes in the body, is of grave importance. In pursuit of this goal, this study screened 41 plant extracts for their antidiabetic and antioxidant activities by employing assays to test for α-amylase inhibition and free radical scavenging activity (FRSA) and by measuring glucose uptake in L6-GLUT4myc cells.
View Article and Find Full Text PDFβ-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction.
View Article and Find Full Text PDFBackground: Trastuzumab is a monoclonal antibody which demonstrates efficacy for HER2 positive breast cancer patients. Recently, an increased incidence of brain metastasis in trastuzumab-treated patients has been reported. The reason for this may be the effectiveness of systemic trastuzumab allowing patients to survive longer thus providing time for brain metastases to develop, along with the lack of penetration of systemic therapies through the blood brain barrier.
View Article and Find Full Text PDFBackground: Rheumatoid arthritis (RA) is a symmetric inflammatory polyarthritis associated with high concentrations of pro-inflammatory, cytokines including tumor necrosis factor (TNF)-α. Adalimumab is a monoclonal antibody (mAb) that binds TNF-α, and is widely used to treat RA. Despite its proven clinical efficacy, adalimumab and other therapeutic mAbs have disadvantages, including the requirement for repeated bolus injections and the appearance of treatment limiting anti-drug antibodies.
View Article and Find Full Text PDFProtein drugs are currently delivered by bolus injection and although treatment frequently is successful, these methods also have major drawbacks, which call for the development of alternative technologies allowing prolonged delivery of these drugs. We developed a new ex vivo gene therapy platform called Transduced Autologous Restorative Gene Therapy (TARGT) for sustained long term production and secretion of autologous therapeutic proteins. A biopsy of dermal tissue taken from the patient is transduced ex vivo with a viral vector encoding the required gene under a constitutive promoter.
View Article and Find Full Text PDFA novel approach for sustained production of therapeutic proteins is described, using genetic modification of intact autologous micro-organ tissue explants from the subject's own skin. The skin-derived micro-organ can be maintained viable ex vivo for extended periods and is transduced with a transgene encoding a desired therapeutic protein, resulting in protein-secreting micro-organ (biopump (BP)). The daily protein production from each BP is quantified, enabling drug dosing by subcutaneous implantation of the requisite number of BPs into the patient to provide continuous production to the circulation of a known amount of the therapeutic protein.
View Article and Find Full Text PDFPurpose: A number of neurological disorders are marked by increased or aberrant frequency of neuronal discharge in specific parts of the brain. Administration of drugs such as antiepileptic compounds results in the depression of neuronal activity in the whole brain, with the potential for serious side-effects. In the search for additional therapies to reduce the unphysiological electrical activity of over-active brain foci, we have examined the effect of fibroblasts transplanted to areas responsible for motor dysfunction in hemi-parkinsonian rats, since bursting synchronous discharges in internal segment of globus pallidus (GPi) are thought to be partially responsible for the movement disorders of PD.
View Article and Find Full Text PDF