Publications by authors named "Miaoyi Zhou"

Lactate, protein lactylation (Kla), and specifically histone lactylation have recently been shown to regulate antipathogenic immune responses in mammals. Herein, after we confirmed the presence and accumulation of lactate in maize roots under drought conditions, a lactylome profiling analysis revealed that Kla modifications were invariably present in maize roots, that there were obvious differences in the lactylomes of drought-sensitive (B73) vs. drought-tolerant (Jing2416) lines, and that growing Jing2416 under drought conditions caused significant decreases in the lactylation of multiple enzymes responsible for fatty acid degradation.

View Article and Find Full Text PDF

Progress through the cell cycle is a critical process during plant embryo and seed development and its progression is regulated by cyclins. Despite extensive study of cyclins in other systems, their role in embryo and seed development of maize is unclear. In this study, we demonstrate that overexpression significantly accelerated embryo growth and increased seed size.

View Article and Find Full Text PDF

Drought is a major abiotic stress that harms plant cell physiology and limits the growth and productivity of crops. Maize (Zea mays L.), one of the most drought-susceptible crops, is a major food source for humans and an important resource for industrial bioenergy production; therefore, understanding the mechanisms of the drought response is essential for maize improvement.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK or MPK) cascades consist of three protein kinase components, MAPK kinase kinases (MAPKKKs), MAPK kinases (MKKs and MPKs), which are indispensable for various plant physiological processes. The functions of MAPK families have been extensively studied in maize (Zea mays L.) and other plant species, but little is known about MAPK families in the elite Chinese maize line Huangzaosi (hzs).

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) cascade plays a crucial role in regulating many important biological processes in plants. Here, we identified and characterized eight MAPKK and 49 MAPKKK genes in sorghum and analyzed their differential expression under drought treatment; we also characterized 16 sorghum MAPK genes. RNA-seq analysis revealed that 10 MAPK cascade genes were involved in drought stress response at the transcriptome level in sorghum.

View Article and Find Full Text PDF

Background: ERECTA (ER) is a leucine-rich repeat-receptor-like kinase gene (LRR-RLK) encoding a protein isolated from Arabidopsis. Although the regulatory functions of ER genes have been widely explored in plant development and disease resistance, their roles in drought stress responses remain to be clarified.

Results: In this study, we cloned and characterized two ER genes, SbER1-1 and SbER2-1, from the drought-tolerant model plant sorghum (Sorghum bicolor L.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (Zea mays L.

View Article and Find Full Text PDF