Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell (IHC). This feature is believed to be critical for audition over a wide dynamic range, but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear. By means of three-dimensional electron microscopy and artificial intelligence-based algorithms, we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice.
View Article and Find Full Text PDFIn mammalian cochlea, sound-induced vibration is amplified by a three-row lattice of Y-shaped microstructures consisting of electromotile outer hair cell and supporting Deiters cell. This highly organized structure is thought to be essential for hearing of low-level sounds. Prior studies reported differences in geometry and synaptic innervation of the outer hair cells between rows, but how these fine features are achieved at subcellular level still remains unclear.
View Article and Find Full Text PDF