Publications by authors named "Miaorong Yu"

The development of effective oral drug delivery systems for targeted gut-to-liver transport remains a significant challenge due to the multiple biological barriers including the harsh gastrointestinal tract (GIT) environment and the complex protein corona (PC) formation. In this study, we developed ligand-modified nanoparticles (NPs) that enable gut-to-liver drug delivery by crossing the GIT and attenuating PC formation. Specifically, mesoporous silica nanoparticles (MSNs) were functionalized with peptides targeting the neonatal Fc receptor (FcRn), capitalizing on FcRn expression in the small intestine and liver for targeted drug delivery.

View Article and Find Full Text PDF

Efficient cytosolic delivery is a significant hurdle when using short interfering RNA (siRNA) in therapeutic applications. Here we show that cholesterol-rich exosomes are prone to entering cancer cells through membrane fusion, achieving direct cytosolic delivery of siRNA. Molecular dynamics simulations suggest that deformation and increased contact with the target cell membrane facilitate membrane fusion.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a novel chemoimmunotherapy approach that targets the endoplasmic reticulum (ER) to enhance the effects of both chemotherapy and immunotherapy in colorectal cancer (CRC).
  • Researchers validated celastrol (CEL) as a promoter of immunogenic cell death (ICD) and combined it with PD-L1 siRNA delivered through modified exosomes from milk (KME) to improve treatment outcomes.
  • The KME delivery system significantly increased the effects of CEL on cancer cells, boosted immune responses by activating dendritic cells and T cell infiltration, and effectively reduced PD-L1 expression, leading to stronger anti-tumor responses.
View Article and Find Full Text PDF

Diabetes, characterized by hyperglycemia, is a major cause of death and disability worldwide. Peptides, such as insulin and glucagon-like peptide-1 (GLP-1) analogs, have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body. Compared to subcutaneous injection, oral administration of anti-diabetic peptides is a preferred approach.

View Article and Find Full Text PDF

Elevated interstitial fluid pressure (IFP) within pathological tissues (e.g., tumors, obstructed kidneys, and cirrhotic livers) creates a significant hindrance to the transport of nanomedicine, ultimately impairing the therapeutic efficiency.

View Article and Find Full Text PDF

The clinical utility of gemcitabine, an antimetabolite antineoplastic agent applied in various chemotherapy treatments, is limited due to the required intravenous injection. Although chemical structure modifications of gemcitabine result in enhanced oral bioavailability, these modifications compromise complex synthetic routes and cause unexpected side effects. In this study, gemcitabine-loaded glycocholic acid-modified micelles (Gem-PPG) were prepared for enhanced oral chemotherapy.

View Article and Find Full Text PDF

In recent decades, advances in chemical synthesis and delivery systems have accelerated the development of therapeutic nucleic acids, several of which have been approved by the Us Food and Drug Administration (FDA). Oral nucleic acid delivery is preferred because of its simplicity and patient compliance, but it still presents distinct challenges. The negative charge, hydrophilicity, and large molecular weight of nucleic acids combined with in vivo gastrointestinal (GI) barriers (e.

View Article and Find Full Text PDF

Disturbed blood flow induces endothelial pro-inflammatory responses that promote atherogenesis. Nanoparticle-based therapeutics aimed at treating endothelial inflammation in vasculature where disturbed flow occurs may provide a promising avenue to prevent atherosclerosis. By using a vertical-step flow apparatus and a microfluidic chip of vascular stenosis, herein, it is found that the disk-shaped versus the spherical nanoparticles exhibit preferential margination (localization and adhesion) to the regions with the pro-atherogenic disturbed flow.

View Article and Find Full Text PDF

Nanobiotechnology and nanomedicine are rapidly growing fields, in which nanomaterials (NMs) can lead to enhanced therapeutic efficacy by achieving efficient transport and drug delivery in vivo. The physicochemical properties of NMs have a great impact on their interactions with biological environments and hence determine their biological fates and drug delivery efficiency. Despite rapid advances in understanding the significance of NM properties, such as shape, size, and surface charge, there is a pressing need to engineer and discover how elasticity shapes NM transport.

View Article and Find Full Text PDF

Mutual interference between surface ligands on multifunctional nanoparticles remains a significant obstacle to achieving optimal drug-delivery efficacy. Here, we develop ligand-switchable nanoparticles which resemble viral unique surfaces, enabling them to fully display diverse functions. The nanoparticles are modified with a pH-responsive stretchable cell-penetrating peptide (Pep) and a liver-targeting moiety (Gal) (Pep/Gal-PNPs).

View Article and Find Full Text PDF

Nanoparticle shape has been recognized as a crucial parameter to affect the transport across various biological barriers, but its impact on drug release and the resulting therapeutic efficacy is less understood. Inspired by erythrocytes with shape-facilitated oxygen-carrying and penetrating abilities, we constructed artificial erythrocyte-like nanoparticles (RNDs) by wrapping discoidal mesoporous silica nanoparticles with red blood cell membrane. We observed that, compared with their spherical and rod-shaped counterparts with monotonic drug release profiles, RNDs displayed an on-demand drug release pattern mimicking natural erythrocytes, that is, they could rapidly release loaded oxygen and doxorubicin (DOX) in hypoxic condition but were relatively stable in high oxygen areas.

View Article and Find Full Text PDF

Transporters are traditionally considered to transport small molecules rather than large-sized nanoparticles due to their small pores. In this study, we demonstrate that the upregulated intestinal transporter (PCFT), which reaches a maximum of 12.3-fold expression in the intestinal epithelial cells of diabetic rats, mediates the uptake of the folic acid-grafted nanoparticles (FNP).

View Article and Find Full Text PDF

The efficacy of oral insulin drug delivery is seriously hampered by multiple gastrointestinal barriers, especially transepithelial barriers, including apical endocytosis, lysosomal degradation, cytosolic diffusion and basolateral exocytosis. In this study, a functional nanoparticle (PG-FAPEP) with dual-modification was constructed to sequentially address these important absorption obstacles for improved oral insulin delivery. The dual surface decorations folate and charge-convertible tripeptide endowed PG-FAPEP with the ability to target the apical and basolateral sides of enterocytes, respectively.

View Article and Find Full Text PDF

Ascorbic palmitate (AP) is widely used in the topical pharmaceutical or cosmetic formulations for melasma treatment. However, the presence of the skin barriers makes it difficult for the highly lipophilic drug molecules to traverse the stratum corneum (SC) and diffuse into the viable epidermis (EP) to reach the melanocytes, thereby exerting suboptimal antimelasma effects. Herein, AP was encapsulated into the transfersomes (TFs), yielding AP-TFs.

View Article and Find Full Text PDF

Promoting tumor angiogenesis effectively and specifically to resolve tumor-associated hypoperfusion holds promise for improving pancreatic cancer therapy. Herein, a doxorubicin (DOX) loaded smart liposome, MC-T-DOX, is constructed, that carries appropriately low-density cilengitide, an v3 integrin-specific Arg-Gly-Asp (RGD)-mimetic cyclic peptide, via a membrane type 1-matrix metalloproteinase (MT1-MMP) cleavable peptide. After being administered systemically in a hypoperfused pancreatic cancer mouse model at a low dose of cilengitide, the proangiogenic activity of MC-T-DOX is specifically "turned on" in tumor vessels through cleavage by MT1-MMP on tumor endothelial cells to release cilengitide.

View Article and Find Full Text PDF

Polyethylene glycols (PEGs) can improve the diffusivity of nanoparticles (NPs) in biological hydrogels, while extended PEG chains severely impede cellular uptake of NPs. Inspired by invasive germs with flagellum-driven mucus-penetrating and fimbriae-mediated epithelium-adhering abilities, we developed germ-mimetic NPs (GMNPs) to overcome multiple barriers in mucosal and tumor tissues. In vitro studies and computational simulations revealed that the tip-specific extended PEG chains on GMNP functioned similarly to flagella, facilitating GMNP diffusion (up to 83.

View Article and Find Full Text PDF

Cell membrane-coated nanocarriers have been developed for drug delivery due to their enhanced blood circulation and tissue targeting capacities; however, previous works have generally focused on spherical nanoparticles and extracellular barriers. Many living organisms with different shapes, such as rod-shaped bacilli and rhabdovirus, display different functionalities regarding tissue penetration, cellular uptake, and intracellular distribution. Herein, we developed cancer cell membrane (CCM)-coated nanoparticles with spherical and rod shapes.

View Article and Find Full Text PDF

Despite rapid advancements in antitumor drug delivery, insufficient intracellular transport and subcellular drug accumulation are still issues to be addressed. Cancer cell membrane (CCM)-camouflaged nanoparticles (NPs) have shown promising potential in tumor therapy due to their immune escape and homotypic binding capacities. However, their efficacy is still limited due to inefficient tumor penetration and compromised intracellular transportation.

View Article and Find Full Text PDF

Recently, liposomes have been widely used in cancer therapeutics, but their anti-tumor effects are suboptimal due to limited tumor penetration. To solve this problem, researchers have made significant efforts to optimize liposomal diameters and potentials, but little attention has been paid to liposomal membrane rigidity. Herein, we sought to demonstrate the effects of cholesterol-tuned liposomal membrane rigidity on tumor penetration and anti-tumor effects.

View Article and Find Full Text PDF

Small unilamellar vesicles (SUVs), ubiquitous in organisms, play key and active roles in various biological processes. Although the physical properties of the constituent lipid molecules (, the acyl chain length and saturation) are known to affect the mechanical properties of SUVs and consequently regulate their biological behaviors and functions, the underlying mechanism remains elusive. Here, we combined theoretical modeling and experimental investigation to probe the mechanical behaviors of SUVs with different lipid compositions.

View Article and Find Full Text PDF

Lipid nanovesicles are widely present as transport vehicles in living organisms and can serve as efficient drug delivery vectors. It is known that the size and surface charge of nanovesicles can affect their diffusion behaviors in biological hydrogels such as mucus. However, how temperature effects, including those of both ambient temperature and phase transition temperature (), influence vehicle transport across various biological barriers outside and inside the cell remains unclear.

View Article and Find Full Text PDF

Gene vectors for oral delivery encounter harsh conditions throughout the gastrointestinal tract, and the continuous peristaltic activity can quickly remove the vectors, leading to inefficient intestinal permeation. Therefore, vectors have demanding property requirements, such as stability under various pH and, more importantly, efficient uptake in different intestinal segments. In this study, a functional polymer, cholesterol-grafted poly(β-amino ester) (poly[hexamethylene diacrylate-β-(5-amino-1-pentanol)] (CH-PHP)), is synthesized and electrostatically interacted with plasmid DNA to form a CH-PHP/DNA complex (CPNC).

View Article and Find Full Text PDF

Increasing the degree of supersaturation of drugs and maintaining their proper stability are very important in improving the oral bioavailability of poorly soluble drugs by a supersaturated drug delivery system (SDDS). In this study, we reported a complex system of Soluplus-Copovidone (Soluplus-PVPVA) loaded with the model drug silybin (SLB) that could not only maintain the stability of a supersaturated solution but also effectively promote oral absorption. The antiprecipitation effect of the polymers on SLB was observed using the solvent-shift method.

View Article and Find Full Text PDF

Spherical particles such as liposomes and microspheres are the most common and extensively applied drug vehicles. However, researchers have come to realize the superiority of nonspherical nanoparticles. Actually, in human bodies red blood cells, gut biotics and many well-known pathogens have distinct shapes.

View Article and Find Full Text PDF

To optimally penetrate biological hydrogels such as mucus and the tumor interstitial matrix, nanoparticles (NPs) require physicochemical properties that would typically preclude cellular uptake, resulting in inefficient drug delivery. Here, we demonstrate that (poly(lactic-co-glycolic acid) (PLGA) core)-(lipid shell) NPs with moderate rigidity display enhanced diffusivity through mucus compared with some synthetic mucus penetration particles (MPPs), achieving a mucosal and tumor penetrating capability superior to that of both their soft and hard counterparts. Orally administered semi-elastic NPs efficiently overcome multiple intestinal barriers, and result in increased bioavailability of doxorubicin (Dox) (up to 8 fold) compared to Dox solution.

View Article and Find Full Text PDF