Publications by authors named "Miaolu He"

The homogeneous Fenton process involves both coagulation and oxidation, but it requires added acidity, so it is rarely used to control membrane fouling. This work found that the pH of neutral simulated wastewater sharply declined to 4.1 after pre-treatment with 0.

View Article and Find Full Text PDF

Nanofluidic membranes offer exceptional promise for osmotic energy conversion, but the challenge of balancing ionic selectivity and permeability persists. Here, we present a bionic nanofluidic system based on two-dimensional (2D) copper tetra-(4-carboxyphenyl) porphyrin framework (Cu-TCPP). The inherent nanoporous structure and horizontal interlayer channels endow the Cu-TCPP membrane with ultrahigh ion permeability and allow for a power density of 16.

View Article and Find Full Text PDF

Nanochannel membranes have demonstrated remarkable potential for osmotic energy harvesting; however, their efficiency in practical high-salinity systems is hindered by reduced ion selectivity. Here, we propose a dual-separation transport strategy by constructing a two-dimensional (2D) vermiculite (VMT)-based heterogeneous nanofluidic system via an eco-friendly and scalable method. The cations are initially separated and enriched in micropores of substrates during the transmembrane diffusion, followed by secondary precise sieving in ultra-thin VMT laminates with high ion flux.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) can be applied to enhance the property of forward osmosis membranes. However, organic solvents can easily remain in organic synthetic metal-organic frame materials and cause membrane fouling and a decrease in membrane permeability. In this study, water-based Zr-fumarate MOFs were synthesized and doped into the membrane active layer by interfacial polymerization to provide a water-based MOF-doped thin-film composite membrane (TFC membrane).

View Article and Find Full Text PDF

Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods.

View Article and Find Full Text PDF

A sulfonated graphene oxide@metal-organic framework-modified forward osmosis nanocomposite (SGO@UiO-66-TFN) membrane was developed to improve stability and heavy metal removal performance. An in situ growth method was applied to uniformly distribute UiO-66 nanomaterial with a frame structure on SGO nanosheets to form SGO@UiO-66 composite nanomaterial. This nanomaterial was then added to a polyamide layer using interfacial polymerization.

View Article and Find Full Text PDF

Two-dimensional (2D) membranes exhibit exceptional properties in molecular separation and transport, which reveals their potential use in various applications. However, ion sieving with 2D membranes is severely restrained due to intercalation-induced swelling. Here, we describe how to efficiently stabilize the lamellar architecture using Keggin Al polycations as pillars in a TiCT membrane.

View Article and Find Full Text PDF