The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O-methylguanine DNA methyltransferase ().
View Article and Find Full Text PDFTertiary lymphoid structures (TLSs) are associated with enhanced immunity in tumors. However, their formation and functions in colorectal cancer liver metastasis (CRLM) remain unclear. Here, we reveal that intra- and peri-tumor mature TLSs (TLS+) are associated with improved clinical outcomes than TLS- tumors.
View Article and Find Full Text PDFThe mechanisms underlying the dynamic remodelling of cellular membrane phospholipids to prevent phospholipid peroxidation-induced membrane damage and evade ferroptosis, a non-apoptotic form of cell death driven by iron-dependent lipid peroxidation, remain poorly understood. Here we show that lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a critical role in ferroptosis resistance by increasing membrane phospholipid saturation via the Lands cycle, thereby reducing membrane levels of polyunsaturated fatty acids, protecting cells from phospholipid peroxidation-induced membrane damage and inhibiting ferroptosis. Furthermore, the enhanced in vivo tumour-forming capability of tumour cells is closely associated with the upregulation of LPCAT1 and emergence of a ferroptosis-resistant state.
View Article and Find Full Text PDFPurpose: Microvascular invasion (MVI) is a major unfavorable prognostic factor for intrahepatic metastasis and postoperative recurrence of hepatocellular carcinoma (HCC). However, the intervention and preoperative prediction for MVI remain clinical challenges due to the absent precise mechanism and molecular marker(s). Herein, we aimed to investigate the mechanisms underlying vascular invasion that can be applied to clinical intervention for MVI in HCC.
View Article and Find Full Text PDFUnlabelled: The bone is the most common site of distant metastasis of breast cancer, which leads to serious skeletal complications and mortality. Understanding the mechanisms underlying breast cancer bone metastasis would provide potential strategies for the prevention and treatment of breast cancer bone metastasis. In this study, we identified a circular RNA that we named circMMP2(6,7) that was significantly upregulated in bone metastatic breast cancer tissues and correlated with breast cancer-bone metastasis.
View Article and Find Full Text PDFUnlabelled: The chemoresistance of temozolomide-based therapy is a serious limitation for lasting effective treatment of gliomas, while the underlying mechanisms remain unclear. In this study, we showed that downregulation of BASP1 correlated negatively with the response to temozolomide therapy and disease-free survival (DFS) of patients with gliomas. Silencing BASP1 significantly enhanced the temozolomide resistance of glioma cells both in vitro and in vivo through repair of temozolomide-induced DNA damage via activation of the FBXO32/NF-κB/MGMT axis in both MGMT-methylated and -unmethylated gliomas.
View Article and Find Full Text PDFAberrant lipid metabolism mediated by the selective transport of fatty acids plays vital roles in cancer initiation, progression, and therapeutic failure. However, the biological function and clinical significance of abnormal fatty acid transporters in human cancer remain unclear. In the present study, we reported that solute carrier family 27 member 4 (SLC27A4) is significantly overexpressed in 21 types of human cancer, especially in the fatty acids-enriched microenvironment surrounding hepatocellular carcinoma (HCC), breast cancer, and ovarian cancer.
View Article and Find Full Text PDFTumor-derived extracellular vesicles (EVs) function as critical mediators in selective modulation of the microenvironment of distant organs to generate a pre-metastatic niche that facilitates organotropic metastasis. Identifying the organ-specific molecular determinants of EVs can develop potential anti-metastatic therapeutic targets. In the current study, large oncosomes (LOs), atypically large cancer-derived EVs, are found to play a crucial role in facilitating bone-tropic metastasis of hepatocellular carcinoma (HCC) cells by engineering an osteoclastic pre-metastatic niche and establishing a vicious cycle between the osteoclasts and HCC cells.
View Article and Find Full Text PDFBackground: The extravasation capability of hepatocellular carcinoma (HCC) cells plays a vital role in distant metastasis. However, the underlying mechanism of extravasation in HCC lung metastasis remains largely unclear.
Methods: The expression of ARHGEF37 in human HCC specimens and HCC cell lines was examined by quantitative RT-PCR, western blot, and immunohistochemistry (IHC) analyses.
Sustaining DNA damage response (DDR) signalling via retention of DDR factors at damaged sites is important for transmitting damage-sensing and repair signals. Herein, we found that DNA damage provoked the association of ribosomes with IRES region in lncRNA CTBP1-DT, which overcame the negative effect of upstream open reading frames (uORFs), and elicited the novel microprotein DNA damage-upregulated protein (DDUP) translation via a cap-independent translation mechanism. Activated ATR kinase-mediated phosphorylation of DDUP induced a drastic 'dense-to-loose' conformational change, which sustained the RAD18/RAD51C and RAD18/PCNA complex at damaged sites and initiated RAD51C-mediated homologous recombination and PCNA-mediated post-replication repair mechanisms.
View Article and Find Full Text PDFFront Cell Dev Biol
June 2022
Metabolic enzyme-genes (MEs) play critical roles in various types of cancers. However, MEs have not been systematically and thoroughly studied in pancreatic cancer (PC). Global analysis of MEs in PC will help us to understand PC progressing and provide new insights into PC therapy.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
August 2023
Serine/arginine-rich splicing factor 7 (SRSF7), a known splicing factor, has been revealed to play oncogenic roles in multiple cancers. However, the mechanisms underlying its oncogenic roles have not been well addressed. Here, based on N-methyladenosine (mA) co-methylation network analysis across diverse cell lines, we find that the gene expression of SRSF7 is positively correlated with glioblastoma (GBM) cell-specific mA methylation.
View Article and Find Full Text PDFBackground: Resistance to platinum-based chemotherapy is a major cause of therapeutic failure during the treatment of epithelial ovarian cancer (EOC) patients. Our study aims to elucidate the molecular mechanisms by which ZNF711 down regulation promotes CISPLATIN resistance in EOC.
Methods: ZNF711 expression in 150 EOC specimens was examined using immunohistochemistry.
Background: Breast cancer (BC) has a marked tendency to spread to the bone, resulting in significant skeletal complications and mortality. Recently, circular RNAs (circRNAs) have been reported to contribute to cancer initiation and progression. However, the function and mechanism of circRNAs in BC bone metastasis (BC-BM) remain largely unknown.
View Article and Find Full Text PDFMitochondrial dynamics play vital roles in the tumorigenicity and malignancy of various types of cancers by promoting the tumor-initiating potential of cancer cells, suggesting that targeting crucial factors that drive mitochondrial dynamics may lead to promising anticancer therapies. In the current study, we report that overexpression of mitochondrial fission factor (MFF), which is upregulated significantly in liver cancer-initiating cells (LCIC), promotes mitochondrial fission and enhances stemness and tumor-initiating capability in non-LCICs. MFF-induced mitochondrial fission evoked mitophagy and asymmetric stem cell division and promoted a metabolic shift from oxidative phosphorylation to glycolysis that decreased mitochondrial reactive oxygen species (ROS) production, which prevented ROS-mediated degradation of the pluripotency transcription factor OCT4.
View Article and Find Full Text PDFThe incidence of bone metastases in hepatocellular carcinoma (HCC) has increased prominently over the past decade owing to the prolonged overall survival of HCC patients. However, the mechanisms underlying HCC bone-metastasis remain largely unknown. In the current study, HCC-secreted lectin galactoside-binding soluble 3 (LGALS3) is found to be significantly upregulated and correlates with shorter bone-metastasis-free survival of HCC patients.
View Article and Find Full Text PDFThe mechanisms underlying how cells subjected to genotoxic stress reestablish reduction-oxidation (redox) homeostasis to scavenge genotoxic stress-induced reactive oxygen species (ROS), which maintains the physiological function of cellular processes and cell survival, remain unclear. Herein, we report that, via a TCF-independent mechanism, genotoxic stress induces the enrichment of β-catenin in chromatin, where it forms a complex with ATM phosphorylated-JDP2 and PRMT5. This elicits histone H3R2me1/H3R2me2s-induced transcriptional activation by the recruitment of the WDR5/MLL methyltransferase complexes and concomitant H3K4 methylation at the promoters of multiple genes in GSH-metabolic cascade.
View Article and Find Full Text PDFBackground: Aberrant fatty acid (FA) metabolism is a unique vulnerability of cancer cells and may present a promising target for cancer therapy. Our study aims to elucidate the molecular mechanisms by which NKX2-8 deletion reprogrammed FA metabolism-induced chemoresistance in epithelial ovarian cancer (EOC).
Methods: The deletion frequency and expression of NKX2-8 in 144 EOC specimens were assayed using Fluorescence in situ hybridization and immunochemical assays.
Tumor-associated lymphangiogenesis has attracted increasing attention because of its potential contribution to lymph node metastasis. However, the molecular mechanisms underlying lymphangiogenesis in cancer remains elusive. In the current study, we demonstrate that tripartite motif-containing 3 (TRIM3) directly interacts with and induces E3 ligase-dependent proteasomal turnover of importin α3 and α-Actinin-4 (ACTN4), which controls nuclear factor kappa B (NF-κB) activity at a well-ordered level.
View Article and Find Full Text PDFPurpose: The development of resistance to platinum-based chemotherapy remains the unsurmountable obstacle in cancer treatment and consequently leads to tumor relapse. This study aims to investigate the mechanism by which loss of RBMS3 induced chemoresistance in epithelial ovarian cancer (EOC).
Experimental Design: FISH and IHC were used to determine deletion frequency and expression of RBMS3 in 15 clinical EOC tissues and 150 clinicopathologically characterized EOC specimens.
It has been reported that the transcription factor activating enhancer-binding protein 4 (TFAP4) is upregulated and associated with an aggressive phenotype in several cancers. However, the precise mechanisms underlying the oncogenic role of TFAP4 remain largely unknown. TFAP4 expression levels in hepatocellular carcinoma (HCC) cells and tissues were detected by quantitative real-time PCR (qPCR) and immunohistochemistry (IHC).
View Article and Find Full Text PDF1,3-dichloro-2-propanol (1,3-DCP) is a widely concerned food processing contaminant which has been investigated for decades. While the neurotoxicity of 1,3-DCP and related mechanisms are still elusive. Herein, the effect of 1,3-DCP on neurotoxicity was investigated using BV-2 microglia cells.
View Article and Find Full Text PDF