Selective hydrogenation of 1,3-butadiene is a crucial industrial process for the removing of 1,3-butadiene, a byproduct of butene production. Developing catalysts with high catalytic performance for the hydrogenation of 1,3-butadiene at low temperatures has become a research hotspot. In this study, bimetallic Pd-Co catalysts supported on AlO derived from MIL-53(Al) at various calcination temperatures were synthesised via the co-impregnation method.
View Article and Find Full Text PDFA series of MOF-derived ZrO-supported Pd-Ni bimetallic catalysts (PdNi/UiO-67-CTAB(n)-A500) were prepared by co-impregnation and pyrolysis at 500 °C under air atmosphere using UiO-67-CTAB(n) (CTAB: cetyltrimethylammonium bromide; n: the concentration of CTAB; = 0, 3, 8, 13, 18) as a sacrificial template. The catalytic activity of PdNi/UiO-66-CTAB(n)-A500 in 1,3-butadiene hydrogenation was found to be dependent on the crystal morphology of the UiO-67 template. The highest activity was observed over the PdNi/UiO-67-CTAB(3)-A500 catalyst which was synthesized using UiO-67-CTAB(3) with uniform octahedral morphology as the template for the 1,3-butadiene selective hydrogenation.
View Article and Find Full Text PDF