In this study, a series of novel chalcone compounds containing 1,2-benzisothiazolin-3-one were designed, synthesized, and screened for the prevention and control of plant bacterial diseases. The results showed that most of the target compounds displayed excellent antibacterial activities. Especially, (2-(3-(4-cinnamoylphenoxy)propyl)benzo[]isothiazol-3(2)-one) exhibited remarkable efficacy against pv in vitro, with a half effective concentration (EC) of 0.
View Article and Find Full Text PDFIntroduction: Plant bacterial diseases take an incalculable toll on global food security. The indiscriminate use of chemical synthetic pesticide not only facilitates pathogen resistance of pathogenic bacteria, but also poses a major threat to human health and environmental protection. Therefore, it is of great economic value and scientific significance to develop a new antibacterial drug with environmental friendliness and unique mechanism of action.
View Article and Find Full Text PDFBenzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi.
View Article and Find Full Text PDFA series of flavonol derivatives containing benzoxazole were designed and synthesized, and the structures of all the target compounds were determined by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The structure of X2 was further confirmed by single crystal X-ray diffraction analysis. The results of the bioactivity tests showed that some of the target compounds possessed excellent antiviral activity against tobacco mosaic virus (TMV) in vivo.
View Article and Find Full Text PDFBackground: Continuous use of synthetic bactericides and fungicides is causing pathogens to develop resistance, resulting in increased use of pesticides and affecting food security. The green pesticides derived from natural products could reduce or avoid 'pesticide hazards' caused by synthetic pesticides as a result of their unique mechanism of action. Therefore, it is of great significance to create green pesticides with novel structures.
View Article and Find Full Text PDF