Publications by authors named "MiaoXin Li"

Efficient pullulan production has long been a central research focus. This study used maltodextrin as the carbon source for pullulan production by Aureobasidium pullulans fermentation. A hybrid optimization approach, integrating orthogonal experimental design (OED), backpropagation artificial neural network (BP-ANN), and elite strategy non-dominated sequential genetic algorithm-II (NSGA-II), was developed.

View Article and Find Full Text PDF

Background: Structural variation (SV) detection methods using third-generation sequencing data are widely employed, yet accurately detecting SVs remains challenging. Different methods often yield inconsistent results for certain SV types, complicating tool selection and revealing biases in detection.

Results: This study comprehensively evaluates 53 SV detection pipelines using simulated and real data from PacBio (CLR: Continuous Long Read, CCS: Circular Consensus Sequencing) and Nanopore (ONT) platforms.

View Article and Find Full Text PDF
Article Synopsis
  • Common psychiatric disorders present a major global healthcare challenge, but developing effective drugs is tough due to the complexities of targeting multiple disease-related genes.
  • A new drug prioritization strategy was proposed that focuses on how drugs can selectively affect genes linked to psychiatric conditions like schizophrenia, depression, and bipolar disorder, using existing genetic and drug response data.
  • The findings indicate that this approach not only identifies known effective drugs but also highlights the potential of targeting multiple pathways in the drug development process for these common mental health disorders.
View Article and Find Full Text PDF

Age is closely related to human health and disease risks. However, chronologically defined age often disagrees with biological age, primarily due to genetic and environmental variables. Identifying effective indicators for biological age in clinical practice and self-monitoring is important but currently lacking.

View Article and Find Full Text PDF

Background: The high mutation rate throughout the entire melanoma genome presents a major challenge in stratifying true driver events from the background mutations. Numerous recurrent non-coding alterations, such as those in enhancers, can shape tumor evolution, thereby emphasizing the importance in systematically deciphering enhancer disruptions in melanoma.

Results: Here, we leveraged 297 melanoma whole-genome sequencing samples to prioritize highly recurrent regions.

View Article and Find Full Text PDF

Despite extensive research on global heritability estimation for complex traits, few methods accurately dissect local heritability. A precise local heritability estimate is crucial for high-resolution mapping in genetics. Here, we report the effective heritability estimator (EHE) that can use p values from genome-wide association studies (GWASs) for local heritability estimation by directly converting marginal heritability estimates of SNPs to a non-redundant heritability estimate of a gene or a small genomic region.

View Article and Find Full Text PDF

Context: Excessive insulin resistance, inadequate insulin compensation, or both could result in gestational diabetes mellitus (GDM). Levels of pigment epithelium-derived factor (PEDF), a novel adipokine that could induce insulin resistance, are high in patients with obesity and diabetes. However, the impact of PEDF in pregnancy remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how early life events impact aging through specific genomic regions influenced by both genetic and environmental factors, focusing on parent-of-origin effects (POE) on DNA methylation.
  • Researchers conducted a wide-ranging analysis identifying 92 associations between POE-influenced methylation and various health and aging traits, with a notable concentration on the effects of maternal smoking and cognitive functions.
  • The findings support the idea that atypical POE influences on DNA methylation are linked to aging mechanisms, highlighting the importance of early development in determining health outcomes in later life.
View Article and Find Full Text PDF

Background: Oxidative stress (OS) is a key pathophysiological mechanism in Crohn's disease (CD). OS-related genes can be affected by environmental factors, intestinal inflammation, gut microbiota, and epigenetic changes. However, the role of OS as a potential CD etiological factor or triggering factor is unknown, as differentially expressed OS genes in CD can be either a cause or a subsequent change of intestinal inflammation.

View Article and Find Full Text PDF

Whole -genome sequencing projects of millions of subjects contain enormous genotypes, entailing a huge memory burden and time for computation. Here, we present GBC, a toolkit for rapidly compressing large-scale genotypes into highly addressable byte-encoding blocks under an optimized parallel framework. We demonstrate that GBC is up to 1000 times faster than state-of-the-art methods to access and manage compressed large-scale genotypes while maintaining a competitive compression ratio.

View Article and Find Full Text PDF

Mendelian randomization using GWAS summary statistics has become a popular method to infer causal relationships across complex diseases. However, the widespread pleiotropy observed in GWAS has made the selection of valid instrumental variables problematic, leading to possible violations of Mendelian randomization assumptions and thus potentially invalid inferences concerning causation. Furthermore, current MR methods can examine causation in only one direction, so that two separate analyses are required for bi-directional analysis.

View Article and Find Full Text PDF

Variation in the rate at which humans age may be rooted in early life events acting through genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions either enriched for genetically controlled imprinting effects (the typical type of POE) or atypical POE introduced by environmental effects associated with parents. This part of the methylome is heavily influenced by early life events, making it a potential route connecting early environmental exposures, the epigenome and the rate of aging.

View Article and Find Full Text PDF

Increasing evidence shows that genetic interaction across the entire genome may explain a non-trivial fraction of genetic diseases. Digenic interaction is the simplest manifestation of genetic interaction among genes. However, systematic exploration of digenic interactive effects on the whole genome is often discouraged by the high dimension burden.

View Article and Find Full Text PDF

The usage of expressed somatic mutations may have a unique advantage in identifying active cancer driver mutations. However, accurately calling mutations from RNA-seq data is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap alignment. In the present study, we proposed a framework (named RNA-SSNV, https://github.

View Article and Find Full Text PDF

Due to the dyeing process, learning samples used for color prediction of pre-colored fiber blends should be re-prepared once the batches of the fiber change. The preparation of the sample is time-consuming and leads to manpower and material waste. The two-constant Kubelka-Munk theory is selected in this article to investigate the feasibility to minimize and optimize the learning samples for the theory since it has the highest prediction accuracy and moderate learning sample size requirement among all the color prediction models.

View Article and Find Full Text PDF

Most complex disease-associated loci mapped by genome-wide association studies (GWAS) are located in non-coding regions. It remains elusive which genes the associated loci regulate and in which tissues/cell types the regulation occurs. Here, we present PCGA (https://pmglab.

View Article and Find Full Text PDF

infections, which lead to local inflammatory responses to schistosome eggs trapped in host tissues, can result in long-term, severe complications. The development of schistosomiasis may result from a complex interaction between the pathogenic, environmental, and host genetic components. Notably, the genetic factors that influence the development of schistosomiasis complications are poorly understood.

View Article and Find Full Text PDF

Isolating the causal genes from numerous genetic association signals in genome-wide association studies (GWASs) of complex phenotypes remains an open and challenging question. In the present study, we proposed a statistical approach, the effective-median-based Mendelian randomization (MR) framework, for inferring the causal genes of complex phenotypes with the GWAS summary statistics (named EMIC). The effective-median method solved the high false-positive issue in the existing MR methods due to either correlation among instrumental variables or noises in approximated linkage disequilibrium (LD).

View Article and Find Full Text PDF

Linkage disequilibrium and disease-associated variants in the non-coding regions make it difficult to distinguish the truly associated genes from the redundantly associated genes for complex diseases. In this study, we proposed a new conditional gene-based framework called eDESE that leveraged an improved effective chi-squared statistic to control the type I error rates and remove the redundant associations. eDESE initially performed the association analysis by mapping variants to genes according to their physical distance.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered 287 genomic regions associated with schizophrenia, emphasizing genes specifically active in excitatory and inhibitory neurons, and identified 120 key genes potentially responsible for these associations.
  • * The findings highlight important biological processes related to neuronal function, suggesting overlaps between common and rare genetic variants in both schizophrenia and neurodevelopmental disorders, ultimately aiding future research on these conditions.
View Article and Find Full Text PDF

Identifying rare variants that contribute to complex diseases is challenging because of the low statistical power in current tests comparing cases with controls. Here, we propose a novel and powerful rare variants association test based on the deviation of the observed mutation burden of a gene in cases from a baseline predicted by a weighted recursive truncated negative-binomial regression (RUNNER) on genomic features available from public data. Simulation studies show that RUNNER is substantially more powerful than state-of-the-art rare variant association tests and has reasonable type 1 error rates even for stratified populations or in small samples.

View Article and Find Full Text PDF

The mechanism underlying neurogenesis during embryonic spinal cord development involves a specific ligand/receptor interaction, which may be help guide neuroengineering to boost stem cell-based neural regeneration for the structural and functional repair of spinal cord injury. Herein, we hypothesized that supplying spinal cord defects with an exogenous neural network in the NT-3/fibroin-coated gelatin sponge (NF-GS) scaffold might improve tissue repair efficacy. To test this, we engineered -modified neural stem cell (NSC)-derived neural network tissue with robust viability within an NF-GS scaffold.

View Article and Find Full Text PDF